Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_14736_kyb_2017_2_0198, author = {Ferger, Dietmar and Venz, John}, title = {Density estimation via best $L^2$-approximation on classes of step functions}, journal = {Kybernetika}, pages = {198--219}, publisher = {mathdoc}, volume = {53}, number = {2}, year = {2017}, doi = {10.14736/kyb-2017-2-0198}, mrnumber = {3661348}, zbl = {06770164}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/} }
TY - JOUR AU - Ferger, Dietmar AU - Venz, John TI - Density estimation via best $L^2$-approximation on classes of step functions JO - Kybernetika PY - 2017 SP - 198 EP - 219 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/ DO - 10.14736/kyb-2017-2-0198 LA - en ID - 10_14736_kyb_2017_2_0198 ER -
%0 Journal Article %A Ferger, Dietmar %A Venz, John %T Density estimation via best $L^2$-approximation on classes of step functions %J Kybernetika %D 2017 %P 198-219 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/ %R 10.14736/kyb-2017-2-0198 %G en %F 10_14736_kyb_2017_2_0198
Ferger, Dietmar; Venz, John. Density estimation via best $L^2$-approximation on classes of step functions. Kybernetika, Tome 53 (2017) no. 2, pp. 198-219. doi : 10.14736/kyb-2017-2-0198. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/
Cité par Sources :