Keywords: argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
@article{10_14736_kyb_2017_2_0198,
author = {Ferger, Dietmar and Venz, John},
title = {Density estimation via best $L^2$-approximation on classes of step functions},
journal = {Kybernetika},
pages = {198--219},
year = {2017},
volume = {53},
number = {2},
doi = {10.14736/kyb-2017-2-0198},
mrnumber = {3661348},
zbl = {06770164},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/}
}
TY - JOUR AU - Ferger, Dietmar AU - Venz, John TI - Density estimation via best $L^2$-approximation on classes of step functions JO - Kybernetika PY - 2017 SP - 198 EP - 219 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/ DO - 10.14736/kyb-2017-2-0198 LA - en ID - 10_14736_kyb_2017_2_0198 ER -
%0 Journal Article %A Ferger, Dietmar %A Venz, John %T Density estimation via best $L^2$-approximation on classes of step functions %J Kybernetika %D 2017 %P 198-219 %V 53 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/ %R 10.14736/kyb-2017-2-0198 %G en %F 10_14736_kyb_2017_2_0198
Ferger, Dietmar; Venz, John. Density estimation via best $L^2$-approximation on classes of step functions. Kybernetika, Tome 53 (2017) no. 2, pp. 198-219. doi: 10.14736/kyb-2017-2-0198
[1] Billingsley, P.: Convergence of Probability Measures. Second Edition. John Wiley and Sons, Inc., New York 1999. | DOI | MR
[2] Birnbaum, Z., Marshall, A.: Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Ann. Math. Statist. 32 (1961), 687-703. | DOI | MR
[3] Chu, C. K., Cheng, P. E.: Estimation of jump points and jump values of a density function. Statist. Sinica 6 (1996), 79-95. | MR | Zbl
[4] Dudley, R. .M.: Uniform Central Limit Theorems. Cambridge University Press, New York 1999. | DOI | MR | Zbl
[5] Ferger, D.: Minimum distance estimation in normed linear spaces with Donsker-classes. Math. Methods Statist. 19 (2010), 246-266. | DOI | MR | Zbl
[6] Ferger, D.: Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies. Theory Stoch. Process. 20 (2015), 36, 13-41. | MR
[7] Gaenssler, P., Stute, W.: Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, New York 1977. | MR | Zbl
[8] Kanazawa, Y.: An optimal variable cell histogram. Comm. Statist. Theory Methods 17 (1988), 1401-1422. | DOI | MR | Zbl
[9] Kanazawa, Y.: An optimal variable cell histogram based on the sample spacings. Ann. Statist. 20 (1992), 291-304. | DOI | MR | Zbl
[10] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Second Edition. Springer-Verlag, New York 2002. | DOI | MR
[11] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990), 1269-1283. | DOI | MR | Zbl
[12] Rockefellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, Berlin, Heidelberg 1998.
[13] Shorack, G. R., Wellner, J. A.: Empirical Processes With Applications to Statistics. John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. | MR | Zbl
Cité par Sources :