Density estimation via best $L^2$-approximation on classes of step functions
Kybernetika, Tome 53 (2017) no. 2, pp. 198-219
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.
DOI :
10.14736/kyb-2017-2-0198
Classification :
60G44, 62F10, 62G07
Keywords: argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
Keywords: argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
@article{10_14736_kyb_2017_2_0198,
author = {Ferger, Dietmar and Venz, John},
title = {Density estimation via best $L^2$-approximation on classes of step functions},
journal = {Kybernetika},
pages = {198--219},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2017},
doi = {10.14736/kyb-2017-2-0198},
mrnumber = {3661348},
zbl = {06770164},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/}
}
TY - JOUR AU - Ferger, Dietmar AU - Venz, John TI - Density estimation via best $L^2$-approximation on classes of step functions JO - Kybernetika PY - 2017 SP - 198 EP - 219 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/ DO - 10.14736/kyb-2017-2-0198 LA - en ID - 10_14736_kyb_2017_2_0198 ER -
%0 Journal Article %A Ferger, Dietmar %A Venz, John %T Density estimation via best $L^2$-approximation on classes of step functions %J Kybernetika %D 2017 %P 198-219 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/ %R 10.14736/kyb-2017-2-0198 %G en %F 10_14736_kyb_2017_2_0198
Ferger, Dietmar; Venz, John. Density estimation via best $L^2$-approximation on classes of step functions. Kybernetika, Tome 53 (2017) no. 2, pp. 198-219. doi: 10.14736/kyb-2017-2-0198
Cité par Sources :