Density estimation via best $L^2$-approximation on classes of step functions
Kybernetika, Tome 53 (2017) no. 2, pp. 198-219 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.
We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.
DOI : 10.14736/kyb-2017-2-0198
Classification : 60G44, 62F10, 62G07
Keywords: argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
@article{10_14736_kyb_2017_2_0198,
     author = {Ferger, Dietmar and Venz, John},
     title = {Density estimation via best $L^2$-approximation on classes of step functions},
     journal = {Kybernetika},
     pages = {198--219},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0198},
     mrnumber = {3661348},
     zbl = {06770164},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/}
}
TY  - JOUR
AU  - Ferger, Dietmar
AU  - Venz, John
TI  - Density estimation via best $L^2$-approximation on classes of step functions
JO  - Kybernetika
PY  - 2017
SP  - 198
EP  - 219
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/
DO  - 10.14736/kyb-2017-2-0198
LA  - en
ID  - 10_14736_kyb_2017_2_0198
ER  - 
%0 Journal Article
%A Ferger, Dietmar
%A Venz, John
%T Density estimation via best $L^2$-approximation on classes of step functions
%J Kybernetika
%D 2017
%P 198-219
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0198/
%R 10.14736/kyb-2017-2-0198
%G en
%F 10_14736_kyb_2017_2_0198
Ferger, Dietmar; Venz, John. Density estimation via best $L^2$-approximation on classes of step functions. Kybernetika, Tome 53 (2017) no. 2, pp. 198-219. doi: 10.14736/kyb-2017-2-0198

[1] Billingsley, P.: Convergence of Probability Measures. Second Edition. John Wiley and Sons, Inc., New York 1999. | DOI | MR

[2] Birnbaum, Z., Marshall, A.: Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Ann. Math. Statist. 32 (1961), 687-703. | DOI | MR

[3] Chu, C. K., Cheng, P. E.: Estimation of jump points and jump values of a density function. Statist. Sinica 6 (1996), 79-95. | MR | Zbl

[4] Dudley, R. .M.: Uniform Central Limit Theorems. Cambridge University Press, New York 1999. | DOI | MR | Zbl

[5] Ferger, D.: Minimum distance estimation in normed linear spaces with Donsker-classes. Math. Methods Statist. 19 (2010), 246-266. | DOI | MR | Zbl

[6] Ferger, D.: Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies. Theory Stoch. Process. 20 (2015), 36, 13-41. | MR

[7] Gaenssler, P., Stute, W.: Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, New York 1977. | MR | Zbl

[8] Kanazawa, Y.: An optimal variable cell histogram. Comm. Statist. Theory Methods 17 (1988), 1401-1422. | DOI | MR | Zbl

[9] Kanazawa, Y.: An optimal variable cell histogram based on the sample spacings. Ann. Statist. 20 (1992), 291-304. | DOI | MR | Zbl

[10] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Second Edition. Springer-Verlag, New York 2002. | DOI | MR

[11] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990), 1269-1283. | DOI | MR | Zbl

[12] Rockefellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, Berlin, Heidelberg 1998.

[13] Shorack, G. R., Wellner, J. A.: Empirical Processes With Applications to Statistics. John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. | MR | Zbl

Cité par Sources :