Keywords: optimal consensus; multi-agent system; Euler–Lagrangian system; event-triggered control
@article{10_14736_kyb_2017_1_0179,
author = {Wang, Xue-Fang and Deng, Zhenhua and Ma, Song and Du, Xian},
title = {Event-triggered design for multi-agent optimal consensus of {Euler-Lagrangian} systems},
journal = {Kybernetika},
pages = {179--194},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0179},
mrnumber = {3638563},
zbl = {06738601},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0179/}
}
TY - JOUR AU - Wang, Xue-Fang AU - Deng, Zhenhua AU - Ma, Song AU - Du, Xian TI - Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems JO - Kybernetika PY - 2017 SP - 179 EP - 194 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0179/ DO - 10.14736/kyb-2017-1-0179 LA - en ID - 10_14736_kyb_2017_1_0179 ER -
%0 Journal Article %A Wang, Xue-Fang %A Deng, Zhenhua %A Ma, Song %A Du, Xian %T Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems %J Kybernetika %D 2017 %P 179-194 %V 53 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0179/ %R 10.14736/kyb-2017-1-0179 %G en %F 10_14736_kyb_2017_1_0179
Wang, Xue-Fang; Deng, Zhenhua; Ma, Song; Du, Xian. Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems. Kybernetika, Tome 53 (2017) no. 1, pp. 179-194. doi: 10.14736/kyb-2017-1-0179
[1] Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Automat. Control 54 (2009), 48-61. | DOI | MR
[2] Shi, G., Johansson, K. H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622. | DOI | MR
[3] Bose, S., Low, S. H., Teeraratkul, T., Hassibi, B.: Equivalent relaxations of optimal power flow. IEEE Trans. Automat. Control 60 (2015), 729-742. | DOI | MR
[4] Zhang, Y., Lou, Y., Hong., Y., Xie, L.: Distributed projection-based algorithms for source localization in wireless sensor networks. IEEE Trans. Wireless Commun. 14 (2015), 3131-3142. | DOI
[5] Liu, Q., Wang, J.: A second-order multi-agent network for bound-constrained distributed optimization. IEEE Trans. Automat. Control 60 (2015), 3310-3315. | DOI | MR
[6] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems Control Lett. 83 (2015), 45-52. | DOI | MR | Zbl
[7] Wang, X., Yi, P., Hong, Y.: Dynamical optimization for multi-agent systems with external disturbance. Control Theory Technol. 12 (2014), 132-138. | DOI | MR
[8] Wang, X., Hong, Y., Ji, H.: Distributed optimization for a class of nonlinear multiagent systems With disturbance rejection. IEEE Trans. Cybernet. 46 (2016), 1655-1666. | DOI
[9] Zhang, Y., Deng, Z., Hong, Y.: Distributed optimal coordination for multiple heterogenous Euler-Lagrangian systems. Automatica 79 (2017), 207-213. | DOI | MR
[10] Yi, P., Hong, Y.: Stochastic sub-gradient algoirthm for distributed optimization with random sleep scheme. Control Theory Technol. 13 (2015), 333-347. | DOI | MR
[11] Hu, J., Chen, G., Li, H.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643. | MR | Zbl
[12] Deng, Z., Hong, Y.: Distributed event-triggered optimization for multi-agent systems with disturbance rejection. In: 12th IEEE Int. Conf. Control and Autom., Kathmandu 2016, pp 13-18. | DOI
[13] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680-1685. | DOI | MR
[14] Chen, W. S., Ren, W.: Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica 65 (2016), 90-97. | DOI | MR | Zbl
[15] Deng, Z., Wang, X., Hong, Y.: Distributed optimization design with triggers for disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 2, 282-290. | DOI
[16] Kia, S. S., Cortes, J., Martinez, S.: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55 (2015), 254-264. | DOI | MR
[17] Cai, H., Huang, J.: Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology. Int. J. Gene. Sys., 43 (2014), 294-304. | DOI | MR | Zbl
[18] Chung, S. J., Slotine, J. J. E.: Cooperative robot control and concurrent synchronization of lagrangian systems. IEEE Trans. Robotics 25 (2009), 686-700. | DOI
[19] Dixon, W. E.: Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach. Birkhäuser, Boston 2003. | Zbl
[20] Kim, C. Y., Song, D. Z., Xu, Y. L., Yi, J. G., Wu, X. Y.: Cooperative search of multiple unknown transient radio sources using multiple paired mobile robots. IEEE Trans. Rob. 30 (2014), 1161-1173. | DOI
[21] Deng, Z., Hong, Y.: Multi-agent optimization design for autonomous lagrangian systems. Unmanned Systems 4 (2016), 5-13. | DOI
[22] Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley and Sons, Hoboken 2006. | DOI
[23] Meng, Z., Yang, T., Shi, G., Dimarogonas, D. V., Hong, Y., Johansson, K. H.: Set target aggregation of multiple mechanical systems. In: IEEE 53rd Ann. Conf. Decision and Control (CDC), Los Angeles 2014, pp. 6830-6835. | DOI
[24] Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton 1970. | DOI | MR | Zbl
[25] Godsil, C. D., Royle, G.: Algebraic Graph Theory. Springer, New York 2001. | DOI | MR | Zbl
[26] Zhu, W., Jiang, Z. P.: Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Trans. Automat. Control 60 (2015), 1362-1367. | DOI | MR
Cité par Sources :