Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control
Kybernetika, Tome 53 (2017) no. 1, pp. 161-178
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper describes the controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Necessary and sufficient conditions for the controllability criteria for linear fractional delay system are established. Further sufficient conditions for the controllability of nonlinear fractional delay integrodifferential system are obtained by using fixed point arguments. Examples are provided to illustrate the results.
This paper describes the controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Necessary and sufficient conditions for the controllability criteria for linear fractional delay system are established. Further sufficient conditions for the controllability of nonlinear fractional delay integrodifferential system are obtained by using fixed point arguments. Examples are provided to illustrate the results.
DOI : 10.14736/kyb-2017-1-0161
Classification : 34A08, 93B05
Keywords: fractional delay integrodifferential equation; Laplace transform; controllability; Mittag–Leffler function; Caputo fractional derivative
@article{10_14736_kyb_2017_1_0161,
     author = {Joice Nirmala, Rajagopal and Balachandran, Krishnan},
     title = {Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control},
     journal = {Kybernetika},
     pages = {161--178},
     year = {2017},
     volume = {53},
     number = {1},
     doi = {10.14736/kyb-2017-1-0161},
     mrnumber = {3638562},
     zbl = {06738600},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0161/}
}
TY  - JOUR
AU  - Joice Nirmala, Rajagopal
AU  - Balachandran, Krishnan
TI  - Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control
JO  - Kybernetika
PY  - 2017
SP  - 161
EP  - 178
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0161/
DO  - 10.14736/kyb-2017-1-0161
LA  - en
ID  - 10_14736_kyb_2017_1_0161
ER  - 
%0 Journal Article
%A Joice Nirmala, Rajagopal
%A Balachandran, Krishnan
%T Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control
%J Kybernetika
%D 2017
%P 161-178
%V 53
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0161/
%R 10.14736/kyb-2017-1-0161
%G en
%F 10_14736_kyb_2017_1_0161
Joice Nirmala, Rajagopal; Balachandran, Krishnan. Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Kybernetika, Tome 53 (2017) no. 1, pp. 161-178. doi: 10.14736/kyb-2017-1-0161

[1] Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210. | DOI | Zbl

[2] Bagley, R. L., Torvik, P. J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23 (1985), 918-925. | DOI | Zbl

[3] Balachandran, K.: Global relative controllability of non-linear systems with time-varying multiple delays in control. Int. J. Control. 46 (1987), 193-200. | DOI | MR

[4] Balachandran, K., Dauer, J. P.: Controllability of perturbed nonlinear delay systems. IEEE Trans. Autom. Control. 32(1987), 172-174. | DOI | MR | Zbl

[5] Balachandran, K., Kokila, J., Trujillo, J.J.: Relative controllability of fractional dynamical systems with multiple delays in control. Comput. Math. Appl. 64 (2012), 3037-3045. | DOI | MR | Zbl

[6] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear. Sci. Numer. Simul. 17 (2012), 3508-3520. | DOI | MR | Zbl

[7] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with distributive delays in control. Comput. Math. Appl. 64(2012), 3201-3209. | DOI | MR

[8] Bellman, R., Cooke, K. L.: Differential Difference Equations. Academic Press, New York 1963. | DOI | MR | Zbl

[9] Chow, T. S.: Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Physics Letter A 342 (2005), 148-155. | DOI

[10] Dauer, J. P., Gahl, R. D.: Controllability of nonlinear delay systems. J. Optimiz. Theory. App. 21 (1977), 59-68. | DOI | MR | Zbl

[11] Dauer, J. P.: Nonlinear perturbations of quasi-linear control systems. J. Math. Anal. Appl. 54 (1976), 717-725. | DOI | MR | Zbl

[12] Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York 1966. | DOI | MR | Zbl

[13] Hale, J.: Theory of Functional Differential Equations. Springer, New York 1977. | DOI | MR | Zbl

[14] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods. Appl. Mech. Eng. 167 (1998), 57-68. | DOI | MR | Zbl

[15] Nirmala, R. Joice, Balachandran, K.: Controllability of nonlinear fractional delay integrodifferential systems. J. Applied Nonlinear Dynamics 5 (2016), 59-73. | DOI | MR

[16] Nirmala, R. Joice, Balachandran, K., Germa, L. R., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Phys. 77 (2016), 87-104. | DOI | MR

[17] Kaczorek, T.: Selected Problems of Fractional Systems Theory: Lecture Notes in Control and Information Science. Springer-Verlag, Berlin 2011. | DOI | MR

[18] Klamka, J.: Controllability of linear systems with time variable delay in control. Int. J. Control 24(1976), 869-878. | DOI | MR

[19] Klamka, J.: Relative controllability of nonlinear systems with delay in control. Automatica 12(1976), 633-634. | DOI | MR

[20] Kilbas, A., Srivastava, H. M., Trujillo, J. J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam 2006. | MR

[21] Machado, J. T.: Analysis and design of fractional order digital control systems. Systems Analysis, Modelling and Simulation 27 (1997), 107-122. | Zbl

[22] Machado, J. T., Costa, A. C., Quelhas, M. D.: Fractional dynamics in DNA. Commun. Nonlinear. Sci. Numer. Simul. 16 (2011), 2963-2969. | DOI | Zbl

[23] Magin, R. L: Fractional calculus in bioengineering. Critical Rev. Biomed. Eng. 32 (2004), 1-377. | DOI

[24] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri and F. Mainardi, eds.), Springer-Verlag 1997, pp. 291-348. | DOI | MR

[25] Manzanilla, R., Marmol, L. G., Vanegas, C. J.: On the controllability of differential equation with delayed and advanced arguments. Abstr. Appl. Anal. 2010 (2010), 1-16. | DOI | MR

[26] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley and Sons, New York 1993. | MR | Zbl

[27] Mur, T., Henriquez, H. R.: Relative controllability of linear systems of fractional order with delay. Math. Control. Relat. F 5(2015), 845-858. | DOI | MR | Zbl

[28] Oguztoreli, M. N.: Time-Lag Control Systems. Academic Press, New York 1966. | DOI | MR | Zbl

[29] Oldham, K. B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York 1974. | DOI | MR

[30] Ortigueira, M. D.: On the initial conditions in continuous time fractional linear systems. Signal Process 83 (2003), 2301-2309. | DOI | Zbl

[31] Podlubny, I.: Fractional Differential Equations. Academic Press, New York 1999. | MR | Zbl

[32] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of their Solution and Some of their Applications. Academic Press, 1999. | DOI | MR | Zbl

[33] Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro-Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer-Verlag, New York 2007. | DOI | MR | Zbl

[34] Schiff, J. L.: The Laplace Transform: Theory and Applications. Springer, New York 1999. | DOI | MR | Zbl

[35] Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10(2016), 320-327. | DOI | MR

[36] Smith, H.: An Introduction to Delay Differential Equations with Application to the Life Sciences. Springer, New York 2011. | DOI | MR

[37] Wei, J.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64 (2012), 3153-3159. | DOI | MR | Zbl

Cité par Sources :