Keywords: fractional delay integrodifferential equation; Laplace transform; controllability; Mittag–Leffler function; Caputo fractional derivative
@article{10_14736_kyb_2017_1_0161,
author = {Joice Nirmala, Rajagopal and Balachandran, Krishnan},
title = {Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control},
journal = {Kybernetika},
pages = {161--178},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0161},
mrnumber = {3638562},
zbl = {06738600},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0161/}
}
TY - JOUR AU - Joice Nirmala, Rajagopal AU - Balachandran, Krishnan TI - Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control JO - Kybernetika PY - 2017 SP - 161 EP - 178 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0161/ DO - 10.14736/kyb-2017-1-0161 LA - en ID - 10_14736_kyb_2017_1_0161 ER -
%0 Journal Article %A Joice Nirmala, Rajagopal %A Balachandran, Krishnan %T Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control %J Kybernetika %D 2017 %P 161-178 %V 53 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0161/ %R 10.14736/kyb-2017-1-0161 %G en %F 10_14736_kyb_2017_1_0161
Joice Nirmala, Rajagopal; Balachandran, Krishnan. Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Kybernetika, Tome 53 (2017) no. 1, pp. 161-178. doi: 10.14736/kyb-2017-1-0161
[1] Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27 (1983), 201-210. | DOI | Zbl
[2] Bagley, R. L., Torvik, P. J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23 (1985), 918-925. | DOI | Zbl
[3] Balachandran, K.: Global relative controllability of non-linear systems with time-varying multiple delays in control. Int. J. Control. 46 (1987), 193-200. | DOI | MR
[4] Balachandran, K., Dauer, J. P.: Controllability of perturbed nonlinear delay systems. IEEE Trans. Autom. Control. 32(1987), 172-174. | DOI | MR | Zbl
[5] Balachandran, K., Kokila, J., Trujillo, J.J.: Relative controllability of fractional dynamical systems with multiple delays in control. Comput. Math. Appl. 64 (2012), 3037-3045. | DOI | MR | Zbl
[6] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear. Sci. Numer. Simul. 17 (2012), 3508-3520. | DOI | MR | Zbl
[7] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with distributive delays in control. Comput. Math. Appl. 64(2012), 3201-3209. | DOI | MR
[8] Bellman, R., Cooke, K. L.: Differential Difference Equations. Academic Press, New York 1963. | DOI | MR | Zbl
[9] Chow, T. S.: Fractional dynamics of interfaces between soft-nanoparticles and rough substrates. Physics Letter A 342 (2005), 148-155. | DOI
[10] Dauer, J. P., Gahl, R. D.: Controllability of nonlinear delay systems. J. Optimiz. Theory. App. 21 (1977), 59-68. | DOI | MR | Zbl
[11] Dauer, J. P.: Nonlinear perturbations of quasi-linear control systems. J. Math. Anal. Appl. 54 (1976), 717-725. | DOI | MR | Zbl
[12] Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York 1966. | DOI | MR | Zbl
[13] Hale, J.: Theory of Functional Differential Equations. Springer, New York 1977. | DOI | MR | Zbl
[14] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods. Appl. Mech. Eng. 167 (1998), 57-68. | DOI | MR | Zbl
[15] Nirmala, R. Joice, Balachandran, K.: Controllability of nonlinear fractional delay integrodifferential systems. J. Applied Nonlinear Dynamics 5 (2016), 59-73. | DOI | MR
[16] Nirmala, R. Joice, Balachandran, K., Germa, L. R., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Phys. 77 (2016), 87-104. | DOI | MR
[17] Kaczorek, T.: Selected Problems of Fractional Systems Theory: Lecture Notes in Control and Information Science. Springer-Verlag, Berlin 2011. | DOI | MR
[18] Klamka, J.: Controllability of linear systems with time variable delay in control. Int. J. Control 24(1976), 869-878. | DOI | MR
[19] Klamka, J.: Relative controllability of nonlinear systems with delay in control. Automatica 12(1976), 633-634. | DOI | MR
[20] Kilbas, A., Srivastava, H. M., Trujillo, J. J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam 2006. | MR
[21] Machado, J. T.: Analysis and design of fractional order digital control systems. Systems Analysis, Modelling and Simulation 27 (1997), 107-122. | Zbl
[22] Machado, J. T., Costa, A. C., Quelhas, M. D.: Fractional dynamics in DNA. Commun. Nonlinear. Sci. Numer. Simul. 16 (2011), 2963-2969. | DOI | Zbl
[23] Magin, R. L: Fractional calculus in bioengineering. Critical Rev. Biomed. Eng. 32 (2004), 1-377. | DOI
[24] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri and F. Mainardi, eds.), Springer-Verlag 1997, pp. 291-348. | DOI | MR
[25] Manzanilla, R., Marmol, L. G., Vanegas, C. J.: On the controllability of differential equation with delayed and advanced arguments. Abstr. Appl. Anal. 2010 (2010), 1-16. | DOI | MR
[26] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley and Sons, New York 1993. | MR | Zbl
[27] Mur, T., Henriquez, H. R.: Relative controllability of linear systems of fractional order with delay. Math. Control. Relat. F 5(2015), 845-858. | DOI | MR | Zbl
[28] Oguztoreli, M. N.: Time-Lag Control Systems. Academic Press, New York 1966. | DOI | MR | Zbl
[29] Oldham, K. B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York 1974. | DOI | MR
[30] Ortigueira, M. D.: On the initial conditions in continuous time fractional linear systems. Signal Process 83 (2003), 2301-2309. | DOI | Zbl
[31] Podlubny, I.: Fractional Differential Equations. Academic Press, New York 1999. | MR | Zbl
[32] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of their Solution and Some of their Applications. Academic Press, 1999. | DOI | MR | Zbl
[33] Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro-Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer-Verlag, New York 2007. | DOI | MR | Zbl
[34] Schiff, J. L.: The Laplace Transform: Theory and Applications. Springer, New York 1999. | DOI | MR | Zbl
[35] Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10(2016), 320-327. | DOI | MR
[36] Smith, H.: An Introduction to Delay Differential Equations with Application to the Life Sciences. Springer, New York 2011. | DOI | MR
[37] Wei, J.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64 (2012), 3153-3159. | DOI | MR | Zbl
Cité par Sources :