Keywords: aggregation function; overrunning and underrunning property; sub-additive and super-additive transformation
@article{10_14736_kyb_2017_1_0129,
author = {Kouchakinejad, Fateme and \v{S}ipo\v{s}ov\'a, Alexandra},
title = {A note on the super-additive and sub-additive transformations of aggregation functions: {The} multi-dimensional case},
journal = {Kybernetika},
pages = {129--136},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0129},
mrnumber = {3638560},
zbl = {06738598},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0129/}
}
TY - JOUR AU - Kouchakinejad, Fateme AU - Šipošová, Alexandra TI - A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case JO - Kybernetika PY - 2017 SP - 129 EP - 136 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0129/ DO - 10.14736/kyb-2017-1-0129 LA - en ID - 10_14736_kyb_2017_1_0129 ER -
%0 Journal Article %A Kouchakinejad, Fateme %A Šipošová, Alexandra %T A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case %J Kybernetika %D 2017 %P 129-136 %V 53 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0129/ %R 10.14736/kyb-2017-1-0129 %G en %F 10_14736_kyb_2017_1_0129
Kouchakinejad, Fateme; Šipošová, Alexandra. A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case. Kybernetika, Tome 53 (2017) no. 1, pp. 129-136. doi: 10.14736/kyb-2017-1-0129
[1] Arlotto, A., Scarsini, M.: Hessian orders and multinormal distributions. J. Multivariate Anal. 100 (2009), 2324-2330. | DOI | MR | Zbl
[2] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin 2007. | DOI
[3] Bernstein, F., Doetsch, G.: Zur Theorie der konvexen Functionen. Math. Annalen 76 (1915), 514-526. | DOI | MR
[4] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions (Encyklopedia of Mathematics and its Applications). Cambridge University Press, 2009. | DOI | MR
[5] Greco, S., Mesiar, R., Rindone, F., Šipeky, L.: The superadditive and the subadditive transformations of integrals and aggregation functions. Fuzzy Sets and Systems 291 (2016), 40-53. | DOI | MR
[6] Kouchakinejad, F., Šipošová, A.: A note on the super-additive and sub-additive transformations of aggregation functions: The one-dimensional case. In: Mathematics, Geometry and their Applications, STU Bratislava 2016, pp. 15-19. | MR
[7] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Second edition. Birkhäuser, 2009. | DOI | MR
[8] Marinacci, M., Montrucchio, L.: Ultramodular functions. Math. Oper. Res. 30 (2005), 311-332. | DOI | MR | Zbl
[9] Murenko, A.: A generalization of Bernstein-Doetsch theorem. Demonstration Math. XLV 1 (2012), 35-38. | MR | Zbl
[10] Šipošová, A.: A note on the superadditive and the subadditive transformations of aggregation functions. Fuzzy Sets and Systems 299 (2016), 98-104. | DOI | MR
[11] Šipošová, A., Šipeky, L.: On aggregation functions with given superadditive and subadditive transformations. In: Congress on Information Technology, Computational and Experimental Physics, Krakow (Poland) 2015, pp. 199-202.
[12] Šipošová, A., Šipeky, L., Širáň, J.: On the existence of aggregation functions with given super-additive and sub-additive transformations. Fuzzy Sets and Systems (in press). | DOI | MR
Cité par Sources :