Selection and correction of weighted rules based on Łukasiewicz's fuzzy logic with evaluated syntax
Kybernetika, Tome 53 (2017) no. 1, pp. 113-128
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The core of the expert knowledge is typically represented by a set of rules (implications) assigned with weights specifying their (un)certainties. In the paper, a method for hierarchical selection and correction of expert's weighted rules is described particularly in the case when Łukasiewicz's fuzzy logic with evaluated syntax for dealing with weights is used.
The core of the expert knowledge is typically represented by a set of rules (implications) assigned with weights specifying their (un)certainties. In the paper, a method for hierarchical selection and correction of expert's weighted rules is described particularly in the case when Łukasiewicz's fuzzy logic with evaluated syntax for dealing with weights is used.
DOI : 10.14736/kyb-2017-1-0113
Classification : 28E10, 28E99
Keywords: uncertain knowledge; fuzzy implication; rule base; Łukasiewicz's fuzzy logic with evaluated syntax; composition function
@article{10_14736_kyb_2017_1_0113,
     author = {Iv\'anek, Ji\v{r}{\'\i}},
     title = {Selection and correction of weighted rules based on {{\L}ukasiewicz's} fuzzy logic with evaluated syntax},
     journal = {Kybernetika},
     pages = {113--128},
     year = {2017},
     volume = {53},
     number = {1},
     doi = {10.14736/kyb-2017-1-0113},
     mrnumber = {3638559},
     zbl = {06738597},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0113/}
}
TY  - JOUR
AU  - Ivánek, Jiří
TI  - Selection and correction of weighted rules based on Łukasiewicz's fuzzy logic with evaluated syntax
JO  - Kybernetika
PY  - 2017
SP  - 113
EP  - 128
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0113/
DO  - 10.14736/kyb-2017-1-0113
LA  - en
ID  - 10_14736_kyb_2017_1_0113
ER  - 
%0 Journal Article
%A Ivánek, Jiří
%T Selection and correction of weighted rules based on Łukasiewicz's fuzzy logic with evaluated syntax
%J Kybernetika
%D 2017
%P 113-128
%V 53
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0113/
%R 10.14736/kyb-2017-1-0113
%G en
%F 10_14736_kyb_2017_1_0113
Ivánek, Jiří. Selection and correction of weighted rules based on Łukasiewicz's fuzzy logic with evaluated syntax. Kybernetika, Tome 53 (2017) no. 1, pp. 113-128. doi: 10.14736/kyb-2017-1-0113

[1] Berka, P.: Learning compositional decision rules using the KEX algorithm. Intelligent Data Analysis 16 (2012), 665-681.

[2] Berka, P., Ivánek, J.: Automated knowledge acquisition for PROSPECTOR-like expert systems. In: Machine Learning: ECML-94 (F. Bergadano and L. D. Raedt, eds.), Springer Verlag 1994, pp. 339-342. | DOI | MR

[3] Hájek, P.: Combining functions for certainty factors in consulting systems. Int. J. Man-Machine Studies 22 (1985), 59-76. | DOI

[4] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1998. | DOI | MR | Zbl

[5] Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. | MR

[6] Ivánek, J.: Representation of expert knowledge as a fuzzy axiomatical theory. Int. J. General Systems 20 (1991), 55-58. | DOI

[7] Ivánek, J., Stejskal, B.: Automatic acquisition of knowledge base from data without expert: ESOD (Expert System from Observational Data). In: Proc. COMPSTAT'88 Copenhagen, Physica-Verlag, Heidelberg 1988, pp. 175-180. | DOI

[8] Ivánek, J., Švenda, J., Ferjenčík, J.: Inference in expert systems based on complete multivalued logic. Kybernetika 25 (1989), 25-32. | DOI | Zbl

[9] Novák, V.: Fuzzy Logic with Evaluated Syntax. In: Handbook of Mathematical Fuzzy Logic (P. Cintula, C. G. Fermuller, C. and Noguera, eds.), volume 3, College Publications, London 2015, pp. 1063-1104. | Zbl

[10] Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston 1999. | DOI | MR | Zbl

[11] Pavelka, J.: On fuzzy logic I, II, III. Zeischr. f. Math. Logik und Grundl. der Math. 25 (1979), 45-52, 119-134, 447-464. | DOI | MR

Cité par Sources :