Keywords: Markov decision process; dynamic programming; varying discount factor; random horizon
@article{10_14736_kyb_2017_1_0082,
author = {Ilhuicatzi-Rold\'an, Rocio and Cruz-Su\'arez, Hugo and Ch\'avez-Rodr{\'\i}guez, Selene},
title = {Markov decision processes with time-varying discount factors and random horizon},
journal = {Kybernetika},
pages = {82--98},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0082},
mrnumber = {3638557},
zbl = {06738595},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0082/}
}
TY - JOUR AU - Ilhuicatzi-Roldán, Rocio AU - Cruz-Suárez, Hugo AU - Chávez-Rodríguez, Selene TI - Markov decision processes with time-varying discount factors and random horizon JO - Kybernetika PY - 2017 SP - 82 EP - 98 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0082/ DO - 10.14736/kyb-2017-1-0082 LA - en ID - 10_14736_kyb_2017_1_0082 ER -
%0 Journal Article %A Ilhuicatzi-Roldán, Rocio %A Cruz-Suárez, Hugo %A Chávez-Rodríguez, Selene %T Markov decision processes with time-varying discount factors and random horizon %J Kybernetika %D 2017 %P 82-98 %V 53 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0082/ %R 10.14736/kyb-2017-1-0082 %G en %F 10_14736_kyb_2017_1_0082
Ilhuicatzi-Roldán, Rocio; Cruz-Suárez, Hugo; Chávez-Rodríguez, Selene. Markov decision processes with time-varying discount factors and random horizon. Kybernetika, Tome 53 (2017) no. 1, pp. 82-98. doi: 10.14736/kyb-2017-1-0082
[1] Carmon, Y., Shwartz, A.: Markov decision processes with exponentially representable discounting. Oper. Res. Lett. 37 (2009), 51-55. | DOI | MR | Zbl
[2] Chen, X., Yang, X.: Optimal consumption and investment problem with random horizon in a BMAP model. Insurance Math. Econom. 61 (2015), 197-205. | DOI | MR | Zbl
[3] Cruz-Suárez, H., Ilhuicatzi-Roldán, R., Montes-de-Oca, R.: Markov decision processes on Borel spaces with total cost and random horizon. J. Optim. Theory Appl. 162 (2014), 329-346. | DOI | MR | Zbl
[4] Vecchia, E. Della, Marco, S. Di, Vidal, F.: Dynamic programming for variable discounted Markov decision problems. In: Jornadas Argentinas de Informática e Investigación O\-pe\-ra\-ti\-va (43JAIIO) XII Simposio Argentino de Investigación Operativa (SIO), Buenos Aires 2014, pp. 50-62.
[5] Feinberg, E., Shwartz, A.: Constrained dynamic programming with two discount factors: applications and an algorithm. IEEE Trans. Automat. Control 44 (1999), 628-631. | DOI | MR | Zbl
[6] Feinberg, E., Shwartz, A.: Markov decision models with weighted discounted criteria. Math. Oper. Res. 19 (1994), 152-168. | DOI | MR | Zbl
[7] García, Y. H., González-Hernández, J.: Discrete-time Markov control process with recursive discounted rates. Kybernetika 52 (2016), 403-426. | DOI | MR
[8] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A.: Adaptive policies for stochastic systems under a randomized discounted criterion. Bol. Soc. Mat. Mex. 14 (2008), 149-163. | MR
[9] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A.: Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2009), 737-754. | MR | Zbl
[10] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A., Gabriel-Arguelles, J. A.: Constrained Markov control processes with randomized discounted cost criteria: occupation measures and external points. Risk and Decision Analysis 4 (2013), 163-176.
[11] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A., Gabriel-Arguelles, J. A.: Constrained Markov control processes with randomized discounted rate: infinite linear programming approach. Optimal Control Appl. Methods 35 (2014), 575-591. | DOI | MR
[12] González-Hernández, J., López-Martínez, R. R., Pérez-Hernández, J. R.: Markov control processes with randomized discounted cost. Math. Methods Oper. Res. 65 (2007), 27-44. | DOI | MR | Zbl
[13] Guo, X., Hernández-del-Valle, A., Hernández-Lerma, O.: First passage problems for nonstationary discrete-time stochastic control systems. Eur. J. Control 18 (2012), 528-538. | DOI | MR | Zbl
[14] Hernández-Lerma, O., Laserre, J. B.: Discrete-time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. | DOI | MR
[15] Hinderer, K.: Foundations of non-stationary dynamic programming with discrete time parameter. In: Lectures Notes Operations Research (M. Bechmann and H. Künzi, eds.), Springer-Verlag 33, Zürich 1970. | DOI | MR | Zbl
[16] Ilhuicatzi-Roldán, R., Cruz-Suárez, H.: Optimal replacement in a system of $n$-machines with random horizon. Proyecciones 31 (2012), 219-233. | DOI | MR | Zbl
[17] Minjares-Sosa, J. A.: Markov Control Models with unknown random state-action-dependent discounted factors. TOP 23 (2015), 743-772. | DOI | MR
[18] Puterman, M. L.: Markov Decision Process: Discrete Stochastic Dynamic Programming. John Wiley and Sons, New York 1994. | MR
[19] Sch{ä}l, M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Probab. Theory Related Fields 32 (1975), 179-196. | DOI | MR | Zbl
[20] Wei, Q., Guo, X.: Markov decision processes with state-dependent discounted factors and unbounded rewards/costs. Oper. Res. Lett. 39 (2011), 369-374. | DOI | MR
[21] Wei, Q., Guo, X.: Semi-Markov decision processes with variance minimization criterion. 4OR, 13 (2015), 59-79. | DOI | MR | Zbl
[22] Wu, X., Guo, X.: First passage optimality and variance minimisation of Markov decision processes with varying discounted factors. J. Appl. Probab. 52 (2015), 441-456. | DOI | MR
[23] Wu, X., Zou, X., Guo, X.: First passage Markov decision processes with constraints and varying discount factors. Front. Math. China 10 (2015), 1005-1023. | DOI | MR | Zbl
[24] Wu, X., Zhang, J.: An application to the finite approximation of the first passage models for discrete-time Markov decision processes with varying discount factors. In: Proc. 11th World Congress on Intelligent Control and Automation 2015, pp. 1745-1748. | DOI | MR
[25] Wu, X., Zhang, J.: Finite approximation of the first passage models for discrete-time Markov decision processes with varying discounted factors. Discrete Event Dyn. Syst. 26 (2016), 669-683. | DOI | MR
[26] Ye, L., Guo, X.: Continuous-time Markov decision processes with state-dependent discount factors. Acta Appl. Math. 121 (2012), 5-27. | DOI | MR | Zbl
[27] Zhang, Y.: Convex analytic approach to constrained discounted Markov decision processes with non-constant discount factors. TOP 21 (2013), 378-408. | DOI | MR | Zbl
Cité par Sources :