Keywords: semi-Markov decision processes; first passage time; unbounded reward rate; minimal variance; mean-variance optimal policy
@article{10_14736_kyb_2017_1_0059,
author = {Huang, Xiangxiang and Huang, Yonghui},
title = {Mean-variance optimality for {semi-Markov} decision processes under first passage criteria},
journal = {Kybernetika},
pages = {59--81},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0059},
mrnumber = {3638556},
zbl = {06738594},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0059/}
}
TY - JOUR AU - Huang, Xiangxiang AU - Huang, Yonghui TI - Mean-variance optimality for semi-Markov decision processes under first passage criteria JO - Kybernetika PY - 2017 SP - 59 EP - 81 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0059/ DO - 10.14736/kyb-2017-1-0059 LA - en ID - 10_14736_kyb_2017_1_0059 ER -
%0 Journal Article %A Huang, Xiangxiang %A Huang, Yonghui %T Mean-variance optimality for semi-Markov decision processes under first passage criteria %J Kybernetika %D 2017 %P 59-81 %V 53 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0059/ %R 10.14736/kyb-2017-1-0059 %G en %F 10_14736_kyb_2017_1_0059
Huang, Xiangxiang; Huang, Yonghui. Mean-variance optimality for semi-Markov decision processes under first passage criteria. Kybernetika, Tome 53 (2017) no. 1, pp. 59-81. doi: 10.14736/kyb-2017-1-0059
[1] Berument, H., Kilinc, Z., Ozlale, U.: The effects of different inflation risk premiums on interest rate spreads. Phys. A 333 (2004), 317-324. | DOI | MR
[2] Baykal-Gürsoy, M., Gürsoy, K.: Semi-Markov decision processes: nonstandard criteria. Probab. Engrg. Inform. Sci. 21 (2007), 635-657. | DOI | MR
[3] Bäuerle, N., Rieder, U.: Markov decision processes with applications to finance. In: Universitext, Springer, Heidelberg 2011. | DOI | MR | Zbl
[4] Collins, E.: Finite-horizon variance penalised Markov decision processes. OR Spektrum 19 (1997), 35-39. | DOI | MR | Zbl
[5] Costa, O. L. V., Maiali, A. C., Pinto, A. de C.: Sampled control for mean-variance hedging in a jump diffusion financial market. IEEE Trans. Automat. Control 55 (2010), 1704-1709. | DOI | MR
[6] Filar, J. A., Kallenberg, L. C. M., Lee, H. M.: Variance-penalized Markov decision processes. Math. Oper. Res. 14 (1989), 147-161. | DOI | MR | Zbl
[7] Fu, C. P., Lari-Lavassani, A., Li, X.: Dynamic mean-variance portfolio selection with borrowing constraint. European J. Oper. Res. 200 (2010), 312-319. | DOI | MR | Zbl
[8] Guo, X. P., Hernández-Lerma, O.: Continuous-Time Markov Decision Processes: Theory and Applications. Springer-Verlag, Berlin 2009. | DOI | MR | Zbl
[9] Guo, X. P., Song, X. Y.: Mean-variance criteria for finite continuous-time Markov decision processes. IEEE Trans. Automat. Control 54 (2009), 2151-2157. | DOI | MR
[10] Guo, X. P., Ye, L. E., Yin, G.: A mean-variance optimization problem for discounted Markov decision processes. European J. Oper. Res. 220 (2012), 423-429. | DOI | MR | Zbl
[11] Guo, X. P., Huang, X. X., Zhang, Y.: On the first passage $g$-mean variance optimality for discounted continuous-time Markov decision processes. SIAM J. Control Optim. 53 (2015), 1406-1424. | DOI | MR | Zbl
[12] Hu, Q. Y.: Continuous time Markov decision processes with discounted moment criterion. J. Math. Anal. Appl. 203 (1996), 1-12. | DOI | MR | Zbl
[13] Hernández-Lerma, O., Lasserre, J. B.: Further Topics on Discrete-Time Markov Control Processes. Springer-Verlag, New York 1999. | DOI | MR | Zbl
[14] Hernández-Lerma, O., Vega-Amaya, O., Carrasco, G.: Sample-path optimality and variance-minimization of average cost Markov control processes. SIAM J. Control Optim. 38 (1999), 79-93. | DOI | MR | Zbl
[15] Haberman, S., Sung, J. H.: Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary. Insurance Math. Econom. 36 (2005), 103-116. | DOI | MR | Zbl
[16] Huang, Y. H., Guo, X. P.: First passage models for denumerable semi-Markov decision processes with nonnegative discounted costs. Acta Math. Appl. Sin. Engl. Ser. 27 (2011), 177-190. | DOI | MR | Zbl
[17] Huang, Y. H., Guo, X. P., Song, X. Y.: Performance analysis for controlled semi-Markov systems with application to maintenance. J. Optim. Theory Appl. 150 (2011), 395-415. | DOI | MR | Zbl
[18] Huang, Y. H., Guo, X. P.: Constrained optimality for first passage criteria in semi-Markov decision processes. Optimization, Control, and Applications of Stochastic Systems, pp. 181-202, Systems Control Found. Appl., Birkhäuser/Springer, New York 2012. | DOI | MR
[19] Huang, Y. H., Guo, X. P.: Mean-variance problems for finite horizon semi-Markov decision processes. Appl. Math. Optim. 72 (2015), 233-259. | DOI | MR | Zbl
[20] Jaquette, S. C.: Markov decision processes with a new optimality criterion: continuous time. Ann. Statist. 3 (1975), 547-553. | DOI | MR | Zbl
[21] Kurano, M.: Markov decision processes with a minimum-variance criterion. J. Math. Anal. Appl. 123 (1987), 572-583. | DOI | MR | Zbl
[22] Kharroubi, I., Lim, T.: A. Ngoupeyou, Mean-variance hedging on uncertain time horizon in a market with a jump. Appl. Math. Optim. 68 (2013), 413-444. | DOI | MR
[23] Lee, M. J., Li, W. J.: Drift and diffusion function specification for short-term interest rates. Econom. Lett. 86 (2005), 339-346. | DOI | MR | Zbl
[24] Mandl, P.: On the variance in controlled Markov chains. Kybernetika 7 (1971), 1-12. | MR | Zbl
[25] Mannor, S., Tsitsiklis, J. N.: Algorithmic aspects of mean-variance optimization in Markov decision processes. European J. Oper. Res. 231 (2013), 645-653. | DOI | MR | Zbl
[26] Markowitz, H. M.: Portfolio Selection: Efficient Diversification of Investments. John Wiley and Sons, Inc., New York 1959. | MR
[27] Prieto-Rumeau, T., Hernández-Lerma, O.: Variance minimization and the overtaking optimality approach to continuous-time controlled Markov chains. Math. Methods Oper. Res. 70 (2009), 527-540. | DOI | MR | Zbl
[28] Sobel, M. J.: The variance of discounted Markov decision processes. J. Appl. Probab. 19 (1982), 794-802. | DOI | MR | Zbl
[29] White, D. J.: Computational approaches to variance-penalised Markov decision processes. OR Spektrum 14 (1992), 79-83. | DOI | MR | Zbl
[30] Wu, X., Guo, X. P.: First passage optimality and variance minimisation of Markov decision processes with varying discount factors. J. Appl. Probab. 52 (2015), 441-456. | DOI | MR | Zbl
[31] Zhou, X. Y., Yin, G.: Markowitz's mean-variance portfolio selection with regime switching: a continuous-time model. SIAM J. Control Optim. 42 (2003), 1466-1482. | DOI | MR | Zbl
[32] Zhu, Q. X., Guo, X. P.: Markov decision processes with variance minimization: a new condition and approach. Stoch. Anal. Appl. 25 (2007), 577-592. | DOI | MR | Zbl
Cité par Sources :