Keywords: heteroscedasticity of disturbances; numerical study of instrumental weighted variables.
@article{10_14736_kyb_2017_1_0026,
author = {V{\'\i}\v{s}ek, Jan \'Amos},
title = {Instrumental weighted variables under heteroscedasticity. {Part} {II} {\textendash} {Numerical} study},
journal = {Kybernetika},
pages = {26--58},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0026},
mrnumber = {3638555},
zbl = {06738593},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0026/}
}
TY - JOUR AU - Víšek, Jan Ámos TI - Instrumental weighted variables under heteroscedasticity. Part II – Numerical study JO - Kybernetika PY - 2017 SP - 26 EP - 58 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0026/ DO - 10.14736/kyb-2017-1-0026 LA - en ID - 10_14736_kyb_2017_1_0026 ER -
Víšek, Jan Ámos. Instrumental weighted variables under heteroscedasticity. Part II – Numerical study. Kybernetika, Tome 53 (2017) no. 1, pp. 26-58. doi: 10.14736/kyb-2017-1-0026
[1] Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., Tukey, J. W.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton 1972. | MR | Zbl
[2] Antoch, J., Víšek, J. Á.: Robust estimation in linear models and its computational aspects. In: Contributions to Statistics: Computational Aspects of Model Choice (J. Antoch, ed.), Springer Verlag 1992, pp. 39-104. | DOI | MR
[3] Atkinson, A. C., Riani, M.: Robust Diagnostic Regresion Analysis. | MR
[4] Barndorff-Nielsen, O., Cox, D. R.: Edgeworth and saddle-point approximations with statistical applications. J. Royal Statist. Soc. B 41 (1979), 3, 279-312. | MR | Zbl
[5] Benáček, V., Víšek, J. Á.: Determining factors of trade specialization and growth of a small economy in transition. Impact of the EU opening-up on Czech exports and imports. IIASA, IR series, no. IR-03-001, 2002, pp. 1-41.
[6] Bickel, P. J.: One-step Huber estimates in the linear model. JASA 70 (1975), 428-433. | DOI | MR | Zbl
[7] Campbell, N. A., Lopuhaa, H. P., Rousseeuw, P. J.: On calculation of a robust $S$-estimator if a covariance matrix. Statist. Medcine 17 (1998), 2685-2695. | DOI
[8] Chatterjee, S., Hadi, A. S.: Sensitivity Analysis in Linear Regression. J. Wiley and Sons, New York 1988. | DOI | MR | Zbl
[9] Čížek, P.: Generalized Method of Trimmed Moments. Center Discussion Paper 2009-25, Tilburg University 2009. | DOI | MR | Zbl
[10] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.: Natural robustification of the ordinary instrumental variables estimator. Biometrics 69 (2013), 641-650. | DOI | MR
[11] Desborges, R., Verardi, V.: A robust instrumental-variable estimator. The Stata J. 12 (2012), 169-181.
[12] Edgeworth, F. Y.: On observations relating to several quantities. Phil. Mag. (5th Series) 24 (1887), 222.
[13] Field, C. A., Ronchetti, E. M.: Small Sample Asymptotics. Institute of Mathematical Statistics Monograph Series, Hayward 1990. | MR | Zbl
[14] J., D. Gervini V., Yohai: A class of robust and fully efficient regression estimators. Annal Statist. 30 (2002), 583-616. | DOI | MR | Zbl
[15] Halmos, P. R.: Applied mathematics is a bad mathematics. In: Mathematics Tomorrow (L. Steen, ed.), Springer Verlag, New York 1981, pp. 9-20. | DOI | MR
[16] Jurečková, J.: Robust estimation of location and regression parameters and their second order asymptotic relations. In: 9th Prague Conf. on Inform. Theory, Reidel 1983, pp. 19-32. | DOI | MR
[17] Jurečková, J., Sen, P. K.: Uniform second order asymptotic linearity of $M$-statistics in linear models. Statistics and Decisions 7 (1989), 263-276. | DOI | MR | Zbl
[18] Jurečková, J., Malý, M.: The asymptotics for studentized $k$-step $M$-estimators of location. Sequential Analysis 14 (1995), 229-245. | DOI | MR | Zbl
[19] Jurečková, J., Welsh, A. H.: Asymptotic relations between $L$- and $M$-estimators in the linear model. Ann. Inst. Statist. Math. 42 (1990), 671-698. | DOI | MR | Zbl
[20] Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46 (1978), 33-50. | DOI | MR | Zbl
[21] Maronna, R. A., Yohai, V. J.: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers. Z. Wahrscheinlichkeitstheorie verw. Gebiete 58 (1981), 7-20. | DOI | MR
[22] Mašíček, L.: Optimality of the least weighted squares estimator. Kybernetika 40 (2004), 715-734. | MR | Zbl
[23] Robinson, J.: Saddle point approximations for permutation tests and confidence intervals. J. Roy. Statist. Soc. B 44 (1982), 1, 91-101. | MR
[24] Rousseeuw, P. J.: Multivariate estimation with high breakdown point. In: Proc. Fourth Pannonian Symposium on Mathematical Statistics, Bad Tatzmannsdorf 1983, pp. 283-297. | DOI | MR | Zbl
[25] Rousseeuw, P. J.: Least median of square regression. J. Amer. Statist. Association 79 (1984), 871-880. | DOI | MR
[26] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection. J. Wiley and Sons, New York 1987. | DOI | MR | Zbl
[27] Rousseeuw, P. J., Yohai, V.: Robust regressiom by means of $S$-estimators. In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics No. 26, Springer Verlag, New York 1984, pp. 256-272. | DOI | MR
[28] Rubio, A. M., Víšek, J. Á.: A note on asymptotic linearity of $M$-statistics in non-linear models. Kybernetika 32 (1996), 353-374 | MR
[29] Siegel, A. F.: Robust regression using repeated medians. Biometrica 69 (1982), 242-244. | DOI | Zbl
[30] Verardi, V., McCathie, A.: The $S$-estimator of multivariate location and scatter in Stata. The Stata J. 12 (2012), 299-307.
[31] Welsh, A. H.: Bahadur representation for robust scale estimators based on regression residuals. Ann. Statist. 14 (1986), 1246-1251. | DOI | MR
[32] Víšek, J. Á.: On second order efficiency of a robust test and approximations of its error probabilities. Kybernetika 8 (1983), 3, 387-407. | MR | Zbl
[33] Víšek, J. Á.: Estimating contamination level. In: Proc. Fifth Pannonian Symposium on Mathematical Statistics, Visegrád 1985, pp. 401-414. | MR | Zbl
[34] Víšek, J. Á.: Robust instruments. In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists 1998, pp. 195-224.
[35] Víšek, J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy. In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445.
[36] Víšek, J. Á.: Regression with high breakdown point. In: ROBUST 2000 (J. Antoch and G. Dohnal, eds.), The Union of the Czech Mathematicians and Physicists and the Czech Statistical Society 2001, pp. 324-356.
[37] Víšek, J. Á.: Character of the Czech economy in transition. In: Proc. The Czech society on the break of the third millennium, Karolinum, Publishing House of the Charles University 2000, pp. 181-205.
[38] Víšek, J. Á.: The least trimmed squares. Part I - Consistency. Kybernetika 42 (2006), 1-36. | MR
[39] Víšek, J. Á.: Robust error-term-scale estimate. IMS Coll., Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková 7 (2010), 254-267. | MR
[40] Víšek, J. Á.: Least weighted squares with constraints and under heteroscedasticity. Bull. Czech Econometr. Soc. 20 (2012), 31, 21-54.
[41] Wooldridge, J. M.: Introductory Econometrics. A Modern Approach. MIT Press, Cambridge 2006. Second edition 2009.
Cité par Sources :