Keywords: tail probability; exponential family; signed log-likelihood; variance function; inequalities
@article{10_14736_kyb_2016_6_0943,
author = {Harremo\"es, Peter},
title = {Bounds on tail probabilities for negative binomial distributions},
journal = {Kybernetika},
pages = {943--966},
year = {2016},
volume = {52},
number = {6},
doi = {10.14736/kyb-2016-6-0943},
mrnumber = {3607856},
zbl = {06707382},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0943/}
}
TY - JOUR AU - Harremoës, Peter TI - Bounds on tail probabilities for negative binomial distributions JO - Kybernetika PY - 2016 SP - 943 EP - 966 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0943/ DO - 10.14736/kyb-2016-6-0943 LA - en ID - 10_14736_kyb_2016_6_0943 ER -
Harremoës, Peter. Bounds on tail probabilities for negative binomial distributions. Kybernetika, Tome 52 (2016) no. 6, pp. 943-966. doi: 10.14736/kyb-2016-6-0943
[1] Alfers, D., Dinges, H.: A normal approximation for beta and gamma tail probabilities. Z. Wahrscheinlichkeitstheory verw. Geb. 65 (1984), 3, 399-420. | DOI | MR | Zbl
[2] Bahadur, R. R.: Some approximations to the binomial distribution function. Ann. Math. Statist. 31 (1960), 43-54. | DOI | MR | Zbl
[3] Bahadur, R. R., Rao, R. R.: On deviation of the sample mean. Ann. Math. Statist. 31 (1960), 4, 1015-1027. | DOI | MR
[4] Barndorff-Nielsen, O. E.: A note on the standardized signed log likelihood ratio. Scand. J. Statist. 17 (1990), 2, 157-160. | MR | Zbl
[5] Györfi, L., Harremoës, P., Tusnády, G.: Gaussian approximation of large deviation probabilities. http://www.harremoes.dk/Peter/ITWGauss.pdf, 2012.
[6] Harremoës, P.: Mutual information of contingency tables and related inequalities. In: Proc. ISIT 2014, IEEE 2014, pp. 2474-2478. | DOI
[7] Harremoës, P., Tusnády, G.: Information divergence is more $\chi^2$-distributed than the $\chi^2$-statistic. In: International Symposium on Information Theory (ISIT 2012) (Cambridge, Massachusetts), IEEE 2012, pp. 538-543. | DOI
[8] Letac, G., Mora, M.: Natural real exponential families with cubic variance functions. Ann. Stat. 18 (1990), 1, 1-37. | DOI | MR | Zbl
[9] Morris, C.: Natural exponential families with quadratic variance functions. Ann. Statist. 10 (1982), 65-80. | DOI | MR | Zbl
[10] Reiczigel, J., Rejtő, L., Tusnády, G.: A sharpning of Tusnády's inequality. arXiv: 1110.3627v2, 2011.
[11] Zubkov, A. M., Serov, A. A.: A complete proof of universal inequalities for the distribution function of the binomial law. Theory Probab. Appl. 57 (2013), 3, 539-544. | DOI | MR | Zbl
Cité par Sources :