Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
Kybernetika, Tome 52 (2016) no. 6, pp. 929-942
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
DOI : 10.14736/kyb-2016-6-0929
Classification : 47H10, 58E30
Keywords: fuzzy metric space; Ekeland variational principle; Caristi's fixed point theorem; Takahashi's maximization theorem
@article{10_14736_kyb_2016_6_0929,
     author = {Abbasi, Naser and Mottaghi Golshan, Hamid},
     title = {Caristi's fixed point theorem and its equivalences in fuzzy metric spaces},
     journal = {Kybernetika},
     pages = {929--942},
     year = {2016},
     volume = {52},
     number = {6},
     doi = {10.14736/kyb-2016-6-0929},
     mrnumber = {3607855},
     zbl = {06707381},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/}
}
TY  - JOUR
AU  - Abbasi, Naser
AU  - Mottaghi Golshan, Hamid
TI  - Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
JO  - Kybernetika
PY  - 2016
SP  - 929
EP  - 942
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/
DO  - 10.14736/kyb-2016-6-0929
LA  - en
ID  - 10_14736_kyb_2016_6_0929
ER  - 
%0 Journal Article
%A Abbasi, Naser
%A Mottaghi Golshan, Hamid
%T Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
%J Kybernetika
%D 2016
%P 929-942
%V 52
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/
%R 10.14736/kyb-2016-6-0929
%G en
%F 10_14736_kyb_2016_6_0929
Abbasi, Naser; Mottaghi Golshan, Hamid. Caristi's fixed point theorem and its equivalences in fuzzy metric spaces. Kybernetika, Tome 52 (2016) no. 6, pp. 929-942. doi: 10.14736/kyb-2016-6-0929

[1] Altun, I., Mihet, D.: Ordered non-archimedean fuzzy metric spaces and some fixed point results. Fixed Point Theory Appl. 2010, Art. ID 782680, 11 pp. | DOI | MR | Zbl

[2] Aubin, J.-P.: Optima and equilibria. An introduction to nonlinear analysis. Translated from the French by Stephen Wilson. Second edition. Springer-Verlag, Graduate Texts in Mathematics 149, Berlin 1998. | MR

[3] Bae, J. S., Cho, E. W., Yeom, S. H.: A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems. J. Korean Math. Soc. 31 (1994), 1, 29-48. | MR

[4] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae 3 (1922), 1, 133-181. | DOI

[5] Brøndsted, A.: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366. | DOI | MR | Zbl

[6] Browder, F. E.: On a theorem of Caristi and Kirk. In: Proc. Sem. Fixed point theory and its applications Dalhousie Univ., Halifax, 1975), Academic Press, New York 1976, pp. 23-27. | MR | Zbl

[7] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | DOI | MR | Zbl

[8] Caristi, J., Kirk, W. A.: Geometric fixed point theory and inwardness conditions. In: Proc. Conf. The geometry of metric and linear spaces, Michigan State Univ., East Lansing 1974), Lecture Notes in Math. 490, Springer, Berlin 1975, pp. 74-83. | DOI | MR | Zbl

[9] Chang, S. S., Luo, Q.: Caristi's fixed point theorem for fuzzy mappings and Ekeland's variational principle. Fuzzy Sets and Systems 64 (1994), 1, 119-125. | DOI | MR | Zbl

[10] Ekeland, I.: Sur les problèmes variationnels. C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1057-A1059. | MR | Zbl

[11] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. | DOI | MR | Zbl

[12] Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979), 3, 443-474. | DOI | MR | Zbl

[13] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 3, 395-399. | DOI | MR | Zbl

[14] George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 4, 933-940. | MR | Zbl

[15] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1988), 3, 385-389. | DOI | MR | Zbl

[16] Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets and Systems 204 (2012), 71-85. | DOI | MR | Zbl

[17] Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. | DOI | MR | Zbl

[18] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Sets and Systems 170 (2011), 95-111. | DOI | MR | Zbl

[19] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets and Systems 130 (2002), 3, 399-404. | DOI | MR | Zbl

[20] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy sets and systems 144 (2004), 3, 411-420. | DOI | MR | Zbl

[21] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Mathematics and its Applications 536, Dordrecht 2001. | DOI | MR | Zbl

[22] Jung, J. S., Cho, Y. J., Kang, S. M., Chang, S.-S.: Coincidence theorems for set-valued mappings and Ekeland's variational principle in fuzzy metric spaces. Fuzzy Sets and Systems 79 (1996), 2, 239-250. | DOI | MR | Zbl

[23] Jung, J. S., Cho, Y. J., Kim, J. K.: Minimization theorems for fixed point theorems in fuzzy metric spaces and applications. Fuzzy Sets and Systems 61 (1994), 2, 199-207. | DOI | MR | Zbl

[24] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Trends in Logic-Studia Logica Library 8, Dordrecht 2000. | DOI | MR | Zbl

[25] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344. | MR | Zbl

[26] Lee, G. M., Lee, B. S., Jung, J. S., Chang, S.-S.: Minimization theorems and fixed point theorems in generating spaces of quasi-metric family. Fuzzy Sets and Systems 101 (1999), 1, 143-152. | DOI | MR | Zbl

[27] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. | DOI | MR | Zbl

[28] Radu, V.: Some remarks on the probabilistic contractions on fuzzy Menger spaces. Automat. Comput. Appl. Math. 11 (2003), 1, 125-131. | MR

[29] Rodríguez-López, J., Romaguera, S.: The {H}ausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems 147 (2004), 2, 273 -283. | DOI | MR | Zbl

[30] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl

[31] Schweizer, B., Sklar, A.: Probabilistic metric spaces. | Zbl

[32] Suzuki, T.: On Downing-Kirk's theorem. J. Math. Anal. Appl. 286 (2003), 2, 453-458. | DOI | MR | Zbl

[33] Suzuki, T.: Generalized Caristi's fixed point theorems by Bae and others. J. Math. Anal. Appl. 302 (2005), 2, 502-508. | DOI | MR | Zbl

[34] Suzuki, T., Takahashi, W.: Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 8 (1997), 2, 371-382. | DOI | MR | Zbl

[35] Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Fixed Point Theory and Aplications Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, pp. 397-406. | MR | Zbl

[36] Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama 2000. | MR | Zbl

[37] Zhu, J., Zhong, C.-K., Wang, G.-P.: An extension of ekeland's variational principle in fuzzy metric space and its applications. Fuzzy Sets and Systems 108 (1999), 3, 353-363. | DOI | MR | Zbl

Cité par Sources :