Keywords: fuzzy metric space; Ekeland variational principle; Caristi's fixed point theorem; Takahashi's maximization theorem
@article{10_14736_kyb_2016_6_0929,
author = {Abbasi, Naser and Mottaghi Golshan, Hamid},
title = {Caristi's fixed point theorem and its equivalences in fuzzy metric spaces},
journal = {Kybernetika},
pages = {929--942},
year = {2016},
volume = {52},
number = {6},
doi = {10.14736/kyb-2016-6-0929},
mrnumber = {3607855},
zbl = {06707381},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/}
}
TY - JOUR AU - Abbasi, Naser AU - Mottaghi Golshan, Hamid TI - Caristi's fixed point theorem and its equivalences in fuzzy metric spaces JO - Kybernetika PY - 2016 SP - 929 EP - 942 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/ DO - 10.14736/kyb-2016-6-0929 LA - en ID - 10_14736_kyb_2016_6_0929 ER -
%0 Journal Article %A Abbasi, Naser %A Mottaghi Golshan, Hamid %T Caristi's fixed point theorem and its equivalences in fuzzy metric spaces %J Kybernetika %D 2016 %P 929-942 %V 52 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/ %R 10.14736/kyb-2016-6-0929 %G en %F 10_14736_kyb_2016_6_0929
Abbasi, Naser; Mottaghi Golshan, Hamid. Caristi's fixed point theorem and its equivalences in fuzzy metric spaces. Kybernetika, Tome 52 (2016) no. 6, pp. 929-942. doi: 10.14736/kyb-2016-6-0929
[1] Altun, I., Mihet, D.: Ordered non-archimedean fuzzy metric spaces and some fixed point results. Fixed Point Theory Appl. 2010, Art. ID 782680, 11 pp. | DOI | MR | Zbl
[2] Aubin, J.-P.: Optima and equilibria. An introduction to nonlinear analysis. Translated from the French by Stephen Wilson. Second edition. Springer-Verlag, Graduate Texts in Mathematics 149, Berlin 1998. | MR
[3] Bae, J. S., Cho, E. W., Yeom, S. H.: A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems. J. Korean Math. Soc. 31 (1994), 1, 29-48. | MR
[4] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae 3 (1922), 1, 133-181. | DOI
[5] Brøndsted, A.: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366. | DOI | MR | Zbl
[6] Browder, F. E.: On a theorem of Caristi and Kirk. In: Proc. Sem. Fixed point theory and its applications Dalhousie Univ., Halifax, 1975), Academic Press, New York 1976, pp. 23-27. | MR | Zbl
[7] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. | DOI | MR | Zbl
[8] Caristi, J., Kirk, W. A.: Geometric fixed point theory and inwardness conditions. In: Proc. Conf. The geometry of metric and linear spaces, Michigan State Univ., East Lansing 1974), Lecture Notes in Math. 490, Springer, Berlin 1975, pp. 74-83. | DOI | MR | Zbl
[9] Chang, S. S., Luo, Q.: Caristi's fixed point theorem for fuzzy mappings and Ekeland's variational principle. Fuzzy Sets and Systems 64 (1994), 1, 119-125. | DOI | MR | Zbl
[10] Ekeland, I.: Sur les problèmes variationnels. C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1057-A1059. | MR | Zbl
[11] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. | DOI | MR | Zbl
[12] Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979), 3, 443-474. | DOI | MR | Zbl
[13] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 3, 395-399. | DOI | MR | Zbl
[14] George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 4, 933-940. | MR | Zbl
[15] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1988), 3, 385-389. | DOI | MR | Zbl
[16] Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets and Systems 204 (2012), 71-85. | DOI | MR | Zbl
[17] Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. | DOI | MR | Zbl
[18] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Sets and Systems 170 (2011), 95-111. | DOI | MR | Zbl
[19] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets and Systems 130 (2002), 3, 399-404. | DOI | MR | Zbl
[20] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy sets and systems 144 (2004), 3, 411-420. | DOI | MR | Zbl
[21] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Mathematics and its Applications 536, Dordrecht 2001. | DOI | MR | Zbl
[22] Jung, J. S., Cho, Y. J., Kang, S. M., Chang, S.-S.: Coincidence theorems for set-valued mappings and Ekeland's variational principle in fuzzy metric spaces. Fuzzy Sets and Systems 79 (1996), 2, 239-250. | DOI | MR | Zbl
[23] Jung, J. S., Cho, Y. J., Kim, J. K.: Minimization theorems for fixed point theorems in fuzzy metric spaces and applications. Fuzzy Sets and Systems 61 (1994), 2, 199-207. | DOI | MR | Zbl
[24] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Trends in Logic-Studia Logica Library 8, Dordrecht 2000. | DOI | MR | Zbl
[25] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344. | MR | Zbl
[26] Lee, G. M., Lee, B. S., Jung, J. S., Chang, S.-S.: Minimization theorems and fixed point theorems in generating spaces of quasi-metric family. Fuzzy Sets and Systems 101 (1999), 1, 143-152. | DOI | MR | Zbl
[27] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. | DOI | MR | Zbl
[28] Radu, V.: Some remarks on the probabilistic contractions on fuzzy Menger spaces. Automat. Comput. Appl. Math. 11 (2003), 1, 125-131. | MR
[29] Rodríguez-López, J., Romaguera, S.: The {H}ausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems 147 (2004), 2, 273 -283. | DOI | MR | Zbl
[30] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl
[31] Schweizer, B., Sklar, A.: Probabilistic metric spaces. | Zbl
[32] Suzuki, T.: On Downing-Kirk's theorem. J. Math. Anal. Appl. 286 (2003), 2, 453-458. | DOI | MR | Zbl
[33] Suzuki, T.: Generalized Caristi's fixed point theorems by Bae and others. J. Math. Anal. Appl. 302 (2005), 2, 502-508. | DOI | MR | Zbl
[34] Suzuki, T., Takahashi, W.: Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 8 (1997), 2, 371-382. | DOI | MR | Zbl
[35] Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Fixed Point Theory and Aplications Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, pp. 397-406. | MR | Zbl
[36] Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama 2000. | MR | Zbl
[37] Zhu, J., Zhong, C.-K., Wang, G.-P.: An extension of ekeland's variational principle in fuzzy metric space and its applications. Fuzzy Sets and Systems 108 (1999), 3, 353-363. | DOI | MR | Zbl
Cité par Sources :