Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
Kybernetika, Tome 52 (2016) no. 6, pp. 929-942.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
DOI : 10.14736/kyb-2016-6-0929
Classification : 47H10, 58E30
Keywords: fuzzy metric space; Ekeland variational principle; Caristi's fixed point theorem; Takahashi's maximization theorem
@article{10_14736_kyb_2016_6_0929,
     author = {Abbasi, Naser and Mottaghi Golshan, Hamid},
     title = {Caristi's fixed point theorem and its equivalences in fuzzy metric spaces},
     journal = {Kybernetika},
     pages = {929--942},
     publisher = {mathdoc},
     volume = {52},
     number = {6},
     year = {2016},
     doi = {10.14736/kyb-2016-6-0929},
     mrnumber = {3607855},
     zbl = {06707381},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/}
}
TY  - JOUR
AU  - Abbasi, Naser
AU  - Mottaghi Golshan, Hamid
TI  - Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
JO  - Kybernetika
PY  - 2016
SP  - 929
EP  - 942
VL  - 52
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/
DO  - 10.14736/kyb-2016-6-0929
LA  - en
ID  - 10_14736_kyb_2016_6_0929
ER  - 
%0 Journal Article
%A Abbasi, Naser
%A Mottaghi Golshan, Hamid
%T Caristi's fixed point theorem and its equivalences in fuzzy metric spaces
%J Kybernetika
%D 2016
%P 929-942
%V 52
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/
%R 10.14736/kyb-2016-6-0929
%G en
%F 10_14736_kyb_2016_6_0929
Abbasi, Naser; Mottaghi Golshan, Hamid. Caristi's fixed point theorem and its equivalences in fuzzy metric spaces. Kybernetika, Tome 52 (2016) no. 6, pp. 929-942. doi : 10.14736/kyb-2016-6-0929. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0929/

Cité par Sources :