Keywords: perfect observer; $h$-difference fractional operator; linear control system; singular system
@article{10_14736_kyb_2016_6_0914,
author = {Pawluszewicz, Ewa},
title = {Perfect observers for fractional discrete-time linear systems},
journal = {Kybernetika},
pages = {914--928},
year = {2016},
volume = {52},
number = {6},
doi = {10.14736/kyb-2016-6-0914},
mrnumber = {3607854},
zbl = {06707380},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0914/}
}
Pawluszewicz, Ewa. Perfect observers for fractional discrete-time linear systems. Kybernetika, Tome 52 (2016) no. 6, pp. 914-928. doi: 10.14736/kyb-2016-6-0914
[1] Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Analysis Appl. 13 (2011), 3, 574-582. | MR | Zbl
[2] Atici, F. M., Eloe, P. W.: A transform method in discrete fractional calculus. Int. J. Difference Equations 2 (2007), 165-176. | MR
[3] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2011), 2, 417-437. | DOI | Zbl
[4] Dai, L.: Observers for discrete singular systems. IEEE Trans. Automat. Control 33 (1988), 2, 187-191. | DOI | MR | Zbl
[5] Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE Trans. Automat. Control 53 (2008), 11, 2627-2633. | DOI | MR
[6] Duarte-Mermoud, M. A., Mira, M. J., Pelissier, I. S., Travieso-Torres, J. C.: Evaluation of a fractional order PI controller applied to induction moror speed control. In: Proc. 8th IEEE Int. Conf. on Control and Automation, Xiamen 2010, pp. 573-577. | DOI
[7] Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58 (2010), 4, 583-59. | DOI | Zbl
[8] Ferreira, R. A. C., Torres, D. F. M.: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5 (2011), 1, 110-121. | DOI | MR | Zbl
[9] Fiacchini, M., Millerioux, G.: Deat-beat functional observers for discrete-time LVP systems with unknown inputs. IEEE Trans. Automat. Control 58 (2013), 12, 3230-3235. | DOI
[10] Girejko, E., Mozyrska, D., Wyrwas, M.: Advances in the theory and applications of non-integer order systems. In: Comparison of $h$-difference fractional operators (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Springer 257 (2013), pp. 191-197. | DOI
[11] Isidori, A.: Nonlinear Control Theory. Springer, 1991. | Zbl
[12] Kaczorek, T.: Full-order perfect observers for continuous-time linear systems. Pomiary, Automatyka, Kontrola 1 (2001), 3-6. | Zbl
[13] Kaczorek, T.: Advances in Modelling and control of non-integer-order systems. In: Perfect Observers of Fractional Descriptor Continuous-Time Linear System (K. J. Latawiec, M. Lukaniszyn and R. Stanislawski, eds.), Lecture Notes in Electrical Engineering, Springer International Publishing 320 (2015), pp. 3-12. | DOI
[14] Miller, K. S., B, Ross: Fractional difference calculus. In: Proc. Int. Symp. on Univalent Functions, Fractional Calculus and their Applications, Nihon University, K\=oriyama 1988, pp. 139-152. | MR
[15] Mozyrska, D., Girejko, E.: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary. In: Overview of the fractional h-difference operators, Springer 229 (2013), pp. 253-267. | DOI | MR
[16] Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearization. Int. J. Syst. Sci. 48 (2017), 4, 788-794. | DOI | MR
[17] Mozyrska, D., Wyrwas, M.: The $\mathcal{Z}$-transform method and delta-type fractional difference operators. Discrete Dynamics in Nature and Society 2015, pp. 47-58. | DOI | MR
[18] Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Stabilization of linear multi-parameter fractional difference control systems. In: Proc. 20th Int. Conf. on Methods and Models in Automation and Robotics MMAR'2015, Miedzyzdroje 2915, pp. 315-319. | DOI
[19] N'Doye, I., Darouach, M., Zasadzinski, M., Radhy, N.-E.: Observers design for singular fractional-order system. In: Proc. 50th Int. Conf. on Decision and Control and European Control Conference CDC-ECC'2011, Orlando 2011, pp. 4017-4022. | DOI
[20] Slawinski, M., Kaczorek, T.: Perfect observers for continuous time linear systems. Pomiary, Automatyka, Kontrola 1 (2004), 39-44.
[21] Sontag, E. D.: Mathematical Control Theory. Springer 1998. | DOI | MR | Zbl
[22] Trigeassou, J. C., Poinot, T., Lin, J., Oustaloup, A., Levron, F.: Modelling and identification of a non integer order system. In: Proc. European Control Conference ECC'1999, Karlsruhe 1999, pp. 2453-2458.
[23] Wolowich, W. A.: Linear Multivariable Systems. Springer-Verlag, 1974. | DOI | MR
[24] Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear $h$- difference systems with $n$ fractional orders. Kybernetika 51 (2015), 1, 112-136. | DOI | MR | Zbl
Cité par Sources :