Keywords: distributed convex optimization; averaging approach; two-time-scale; Markovian switching; invariant measure
@article{10_14736_kyb_2016_6_0898,
author = {Ni, Wei and Wang, Xiaoli},
title = {Averaging approach to distributed convex optimization for continuous-time multi-agent systems},
journal = {Kybernetika},
pages = {898--913},
year = {2016},
volume = {52},
number = {6},
doi = {10.14736/kyb-2016-6-0898},
mrnumber = {3607853},
zbl = {06707379},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0898/}
}
TY - JOUR AU - Ni, Wei AU - Wang, Xiaoli TI - Averaging approach to distributed convex optimization for continuous-time multi-agent systems JO - Kybernetika PY - 2016 SP - 898 EP - 913 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0898/ DO - 10.14736/kyb-2016-6-0898 LA - en ID - 10_14736_kyb_2016_6_0898 ER -
%0 Journal Article %A Ni, Wei %A Wang, Xiaoli %T Averaging approach to distributed convex optimization for continuous-time multi-agent systems %J Kybernetika %D 2016 %P 898-913 %V 52 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0898/ %R 10.14736/kyb-2016-6-0898 %G en %F 10_14736_kyb_2016_6_0898
Ni, Wei; Wang, Xiaoli. Averaging approach to distributed convex optimization for continuous-time multi-agent systems. Kybernetika, Tome 52 (2016) no. 6, pp. 898-913. doi: 10.14736/kyb-2016-6-0898
[1] Bertsekas, D. P., Tsitsiklis, J. N.: Neuro-Dynamic Programming. Athena Scientific, Belmont 1996. | Zbl
[2] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, 2004. | DOI | MR | Zbl
[3] Evans, L. C.: Partial Differential Equations. Second edition. American Math Society, 2010. | MR
[4] Feijer, D., Paganini, F.: Stability of primal-dual gradient dynamics and applications to network optimization. Automatica 46 (2010), 1974-1981. | DOI | MR | Zbl
[5] Freedman, D.: Markov Chains. Springer-Verlag, New York 1983. | DOI | MR | Zbl
[6] Gharesifard, B., Cortes, J.: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 781-786. | DOI | MR
[7] Golshtein, F. G., Yakov, N. V.: Modified Lagrangians and Moonotone Maps in Optimization. Wiley, New York 1996. | MR
[8] Kushner, K. J.: Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory. The MIT Press, London 1984. | MR | Zbl
[9] Liu, S., Qiu, Z., Xie, L.: Continuous-time distributed convex optimization with set constraints. In: Proc. 19th IFAC World Congress, Cape Town 2014, pp. 9762-9767. | DOI
[10] Liu, Q., Wang, J.: A second-order multi-agent network for bounded-constrained distributed optimization. IEEE Trans. Automat. Control 60 (2015), 3310-3315. | DOI | MR
[11] Lou, Y., Hong, Y., Wang, S.: Distributed continuous-time approximate projection protocols for shortest distance optimization problems. Automatica 69 (2016), 289-297. | DOI | MR | Zbl
[12] Lu, J., Tang, C. Y.: Zero-gradient-sum algorithms for distributed convex: the continuous-time case. IEEE Trans. Automat. Control 57 (2012), 2348-2354. | DOI | MR
[13] Mateos-Nunez, D., Cortes, J.: Noise-to-state exponential stable distributed convex optimization on weight-balanced digraphs. SIAM J.n Control Optim. 54 (2016), 266-290. | DOI | MR
[14] Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Automat. Control 54 (2009), 48-61. | DOI | MR
[15] Nedic, A., Ozdaglar, A., Parrilo, P. A.: Constained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938. | DOI | MR
[16] Pavliotis, G. V., Stuart, A. M.: Multiscale methods: averaging and homogenization. Springer-Verlag, New York 2008. | MR | Zbl
[17] Ni, W., Wang, Xiaoli, Xiong, Chun: Leader-following consensus of multiple linear systems under switching topologies: an averaging method. Kybernetika 48 (2012), 1194-1210. | MR | Zbl
[18] Ni, W., Wang, X., Xiong, C.: Consensus controllability, observability and robust design for leader-following linear multi-agent systems. Automatica 49 (2013), 2199-2205. | DOI | MR
[19] Ni, W., Zhao, D., Ni, Y., Wang, X.: Stochastic averaging approach to leader-following consensus of linear multi-agent systems. J. Franklin Inst. 353 (2016), 2650-2669. | DOI | MR | Zbl
[20] Nowak, R. D.: Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. Signal Process. 51 (2003), 2245-2253. | DOI
[21] Tanabe, K.: A geometric method in nonlinear programming. J. Optim. Theory Appll. 30 (1980), 181-210. | DOI | MR | Zbl
[22] Touri, B., Gharesifard, B.: Continuous-time distributed convex optimization on time-varying directed networks. In: 54th IEEE Conference on Decision and Control, Osaka 2015, pp. 724-729. | DOI
[23] Wang, J., Elia, N.: Control approach to distributed optimization. In: 48th Annual Allerton Conference on Communication, Control, and Computing 2010, pp. 557-561. | DOI
[24] Wang, J., Elia, N.: A control perspective for centralized and distributed convex optimization. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 3800-3805.
[25] Wang, X., Yi, P., Hong, Y.: Dynamic optimization for multi-agent systems with external disturbances. Control Theory Technol. 12 (2014), 132-138. | DOI | MR
[26] Yi, P., Zhang, Y., Hong, Y.: Potential game design for a class of distributed optimisation problems. J. Control Decision 1 (2014), 166-179. | DOI
[27] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems Control Lett. 83 (2015), 45-52. | DOI | MR | Zbl
[28] Yi, P., Hong, Y., Liu, F.: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74 (2016), 259-269. | DOI | MR
[29] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. arXiv:1510.07386v2, 2016.
Cité par Sources :