Keywords: distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup
@article{10_14736_kyb_2016_5_0824,
author = {Sano, Hideki},
title = {On approximation of stability radius for an infinite-dimensional feedback control system},
journal = {Kybernetika},
pages = {824--835},
year = {2016},
volume = {52},
number = {5},
doi = {10.14736/kyb-2016-5-0824},
mrnumber = {3602017},
zbl = {06674941},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/}
}
TY - JOUR AU - Sano, Hideki TI - On approximation of stability radius for an infinite-dimensional feedback control system JO - Kybernetika PY - 2016 SP - 824 EP - 835 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/ DO - 10.14736/kyb-2016-5-0824 LA - en ID - 10_14736_kyb_2016_5_0824 ER -
Sano, Hideki. On approximation of stability radius for an infinite-dimensional feedback control system. Kybernetika, Tome 52 (2016) no. 5, pp. 824-835. doi: 10.14736/kyb-2016-5-0824
[1] Balas, M. J.: Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters. J. Math. Anal. Appl. 133 (1988), 283-296. | DOI | MR | Zbl
[2] Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, 1999. | DOI | MR | Zbl
[3] Curtain, R. F.: Finite dimensional compensators for parabolic distributed systems with unbounded control and observation. SIAM J. Control Optim. 22 (1984), 255-276. | DOI | MR | Zbl
[4] Glowinski, R., Lions, J.-L., He, J.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. In: Encyclopedia of Mathematics and Its Applications, vol. 117. Cambridge University Press, Cambridge 2008. | MR | Zbl
[5] Jai, A. El, Pritchard, A. J.: Sensors and Controls in the Analysis of Distributed Systems. English Language Edition. Ellis Horwood Limited, Chichester 1988. | MR
[6] Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numerical Analysis 35 (2015), 1402-1425. | DOI | MR | Zbl
[7] Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I: Abstract Parabolic Systems. In: Encyclopedia of Mathematics and Its Applications, vol. 74. Cambridge University Press, Cambridge 2000. | DOI | MR
[8] Nambu, T.: On stabilization of partial differential equations of parabolic type: boundary observation and feedback. Funkcialaj Ekvacioj, Serio Internacia 28 (1985), 267-298. | MR | Zbl
[9] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. In: Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York 1983. | DOI | MR | Zbl
[10] Pritchard, A. J., Townley, S.: Robust compensator design via structured stability radii. Systems Control Lett. 11 (1988), 33-37. | DOI | MR | Zbl
[11] Pritchard, A. J., Townley, S.: Robustness of linear systems. J. Differential Equations 77 (1989), 254-286. | DOI | MR | Zbl
[12] Sakawa, Y.: Feedback stabilization of linear diffusion systems. SIAM J. Control Optim. 21 (1983), 667-676. | DOI | MR | Zbl
[13] Sano, H., Kunimatsu, N.: Feedback stabilization of infinite-dimensional systems with $A^{\gamma}$-bounded output operators. Appl. Math. Lett. 7 (1994), 5, 17-22. | DOI | MR
[14] Sano, H.: Finite-dimensional $H_{\infty}$ control of linear parabolic systems with unbounded output operators. Int. J. Control 72 (1999), 16, 1466-1479. | DOI | MR
[15] Sano, H.: Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement. J. Math. Anal. Appl. 388 (2012), 1194-1204. | DOI | MR | Zbl
[16] Schumacher, J. M.: A direct approach to compensator design for distributed parameter systems. SIAM J. Control Optim. 21 (1983), 823-836. | DOI | MR | Zbl
[17] Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. (In Japanese, translated from the English by K. Z. Liu and Z. H. Luo.). Corona, Tokyo 1997.
Cité par Sources :