On approximation of stability radius for an infinite-dimensional feedback control system
Kybernetika, Tome 52 (2016) no. 5, pp. 824-835.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty$-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty$-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty$-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation.
DOI : 10.14736/kyb-2016-5-0824
Classification : 93C25, 93D15
Keywords: distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup
@article{10_14736_kyb_2016_5_0824,
     author = {Sano, Hideki},
     title = {On approximation of stability radius for an infinite-dimensional feedback control system},
     journal = {Kybernetika},
     pages = {824--835},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2016},
     doi = {10.14736/kyb-2016-5-0824},
     mrnumber = {3602017},
     zbl = {06674941},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/}
}
TY  - JOUR
AU  - Sano, Hideki
TI  - On approximation of stability radius for an infinite-dimensional feedback control system
JO  - Kybernetika
PY  - 2016
SP  - 824
EP  - 835
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/
DO  - 10.14736/kyb-2016-5-0824
LA  - en
ID  - 10_14736_kyb_2016_5_0824
ER  - 
%0 Journal Article
%A Sano, Hideki
%T On approximation of stability radius for an infinite-dimensional feedback control system
%J Kybernetika
%D 2016
%P 824-835
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/
%R 10.14736/kyb-2016-5-0824
%G en
%F 10_14736_kyb_2016_5_0824
Sano, Hideki. On approximation of stability radius for an infinite-dimensional feedback control system. Kybernetika, Tome 52 (2016) no. 5, pp. 824-835. doi : 10.14736/kyb-2016-5-0824. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/

Cité par Sources :