On approximation of stability radius for an infinite-dimensional feedback control system
Kybernetika, Tome 52 (2016) no. 5, pp. 824-835 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty$-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty$-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty$-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation.
In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty$-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty$-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty$-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation.
DOI : 10.14736/kyb-2016-5-0824
Classification : 93C25, 93D15
Keywords: distributed parameter system; finite-dimensional controller; stability radius; transfer function; semigroup
@article{10_14736_kyb_2016_5_0824,
     author = {Sano, Hideki},
     title = {On approximation of stability radius for an infinite-dimensional feedback control system},
     journal = {Kybernetika},
     pages = {824--835},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.14736/kyb-2016-5-0824},
     mrnumber = {3602017},
     zbl = {06674941},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/}
}
TY  - JOUR
AU  - Sano, Hideki
TI  - On approximation of stability radius for an infinite-dimensional feedback control system
JO  - Kybernetika
PY  - 2016
SP  - 824
EP  - 835
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/
DO  - 10.14736/kyb-2016-5-0824
LA  - en
ID  - 10_14736_kyb_2016_5_0824
ER  - 
%0 Journal Article
%A Sano, Hideki
%T On approximation of stability radius for an infinite-dimensional feedback control system
%J Kybernetika
%D 2016
%P 824-835
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0824/
%R 10.14736/kyb-2016-5-0824
%G en
%F 10_14736_kyb_2016_5_0824
Sano, Hideki. On approximation of stability radius for an infinite-dimensional feedback control system. Kybernetika, Tome 52 (2016) no. 5, pp. 824-835. doi: 10.14736/kyb-2016-5-0824

[1] Balas, M. J.: Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters. J. Math. Anal. Appl. 133 (1988), 283-296. | DOI | MR | Zbl

[2] Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, 1999. | DOI | MR | Zbl

[3] Curtain, R. F.: Finite dimensional compensators for parabolic distributed systems with unbounded control and observation. SIAM J. Control Optim. 22 (1984), 255-276. | DOI | MR | Zbl

[4] Glowinski, R., Lions, J.-L., He, J.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. In: Encyclopedia of Mathematics and Its Applications, vol. 117. Cambridge University Press, Cambridge 2008. | MR | Zbl

[5] Jai, A. El, Pritchard, A. J.: Sensors and Controls in the Analysis of Distributed Systems. English Language Edition. Ellis Horwood Limited, Chichester 1988. | MR

[6] Guglielmi, N., Manetta, M.: Approximating real stability radii. IMA J. Numerical Analysis 35 (2015), 1402-1425. | DOI | MR | Zbl

[7] Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I: Abstract Parabolic Systems. In: Encyclopedia of Mathematics and Its Applications, vol. 74. Cambridge University Press, Cambridge 2000. | DOI | MR

[8] Nambu, T.: On stabilization of partial differential equations of parabolic type: boundary observation and feedback. Funkcialaj Ekvacioj, Serio Internacia 28 (1985), 267-298. | MR | Zbl

[9] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. In: Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York 1983. | DOI | MR | Zbl

[10] Pritchard, A. J., Townley, S.: Robust compensator design via structured stability radii. Systems Control Lett. 11 (1988), 33-37. | DOI | MR | Zbl

[11] Pritchard, A. J., Townley, S.: Robustness of linear systems. J. Differential Equations 77 (1989), 254-286. | DOI | MR | Zbl

[12] Sakawa, Y.: Feedback stabilization of linear diffusion systems. SIAM J. Control Optim. 21 (1983), 667-676. | DOI | MR | Zbl

[13] Sano, H., Kunimatsu, N.: Feedback stabilization of infinite-dimensional systems with $A^{\gamma}$-bounded output operators. Appl. Math. Lett. 7 (1994), 5, 17-22. | DOI | MR

[14] Sano, H.: Finite-dimensional $H_{\infty}$ control of linear parabolic systems with unbounded output operators. Int. J. Control 72 (1999), 16, 1466-1479. | DOI | MR

[15] Sano, H.: Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement. J. Math. Anal. Appl. 388 (2012), 1194-1204. | DOI | MR | Zbl

[16] Schumacher, J. M.: A direct approach to compensator design for distributed parameter systems. SIAM J. Control Optim. 21 (1983), 823-836. | DOI | MR | Zbl

[17] Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. (In Japanese, translated from the English by K. Z. Liu and Z. H. Luo.). Corona, Tokyo 1997.

Cité par Sources :