Keywords: image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis
@article{10_14736_kyb_2016_5_0791,
author = {Kimiaei, Morteza and Rostami, Majid},
title = {Impulse noise removal based on new hybrid conjugate gradient approach},
journal = {Kybernetika},
pages = {791--823},
year = {2016},
volume = {52},
number = {5},
doi = {10.14736/kyb-2016-5-0791},
mrnumber = {3602016},
zbl = {06674940},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0791/}
}
TY - JOUR AU - Kimiaei, Morteza AU - Rostami, Majid TI - Impulse noise removal based on new hybrid conjugate gradient approach JO - Kybernetika PY - 2016 SP - 791 EP - 823 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0791/ DO - 10.14736/kyb-2016-5-0791 LA - en ID - 10_14736_kyb_2016_5_0791 ER -
%0 Journal Article %A Kimiaei, Morteza %A Rostami, Majid %T Impulse noise removal based on new hybrid conjugate gradient approach %J Kybernetika %D 2016 %P 791-823 %V 52 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0791/ %R 10.14736/kyb-2016-5-0791 %G en %F 10_14736_kyb_2016_5_0791
Kimiaei, Morteza; Rostami, Majid. Impulse noise removal based on new hybrid conjugate gradient approach. Kybernetika, Tome 52 (2016) no. 5, pp. 791-823. doi: 10.14736/kyb-2016-5-0791
[1] Barzilai, J., Borwein, J. M.: Two point step size gradient method. IMA J. Numer. Anal. 8 (1988), 141-148. | DOI | MR
[2] Bertalmio, M., Vese, L. A., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Processing. 12 (2003), 8, 882-889. | DOI
[3] Cai, J. F., Chan, R. H., Fiore, C. D.: Minimization of a detail-preserving regularization functional for impulse noise removal. J. Math. Imaging Vision. 27 (2007), 79-91. | DOI | MR
[4] Cai, J. F., Chan, R. H., Morini, B.: Minimization of an edge-preserving regularization functional by conjugate gradient type methods, image processing based on partial differential equations. In: Mathematics and Visualization, Springer, Berlin Heidelberg 2007, pp. 109-122. | DOI | MR
[5] Cai, J. F., Chan, R. H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Problem and Imaging. 2 (2008), 187-204. | DOI | MR | Zbl
[6] Cai, J. F., Chan, R. H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging and Vision 36 (2010), 46-53. | DOI | MR
[7] Chan, R., Hu, C., Nikolova, M.: Iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. 11 (2004), 12, 921-924. | DOI
[8] Chan, R. H., Ho, C. W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14 (2005), 1479-1485. | DOI
[9] Chan, T. F., Shen, J., Zhou, H.: Total variation wavelet inpainting. J. Math. Imaging Vision 25 (2006), 107-125. | DOI | MR
[10] Chen, T., Wu, H. R.: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8 (2001), 1-3. | DOI
[11] Dai, Y. H., Ni, Q.: Testing different conjugate gradient methods for large-scale unconstrained optimization. J. Comput. Math. 21 (2003), 311-320. | MR | Zbl
[12] Dai, Y. H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. IEEE SIAM J. Optim. 10 (1999), 177-182. | DOI | MR | Zbl
[13] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91 (2002), 2, 201-213. | DOI | MR | Zbl
[14] Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149-154. | DOI | MR | Zbl
[15] Gilbert, J. C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992), 21-42. | DOI | MR | Zbl
[16] Hager, W. W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005), 170-192. | DOI | MR | Zbl
[17] Hager, W. W., Zhang, H.: A survey of nonlinear conjugate gradeint methods. http://www.math.u.edu/$\sim$ hager, 2005. | MR
[18] Hestenes, M. R., Stiefel, E. L.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 (1952), 409-436. | DOI | MR | Zbl
[19] Hwang, H., Haddad, R. A.: Adaptive median filters: New algorithms and results. IEEE Trans. Image Process. 4 (1995), 499-502. | DOI | MR
[20] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1989), 503-528. | DOI | MR | Zbl
[21] Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20 (2004), 1-2, 99-120. Special issue on mathematics and image analysis. | DOI | MR
[22] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980), 773-782. | DOI | MR | Zbl
[23] Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, New York 2006. | DOI | MR | Zbl
[24] Polyak, B. T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969), 94-112. | DOI
[25] Polyak, E., Ribière, G.: Note sur la convergence de directions conjugées. Francaise Informat Recherche Opertionelle, 3e Année 16 (1969), 35-43.
[26] Powell, M. J. D.: Restart procedures of the conjugate gradient method. Math. Prog. 2 (1977), 241-254. | DOI | MR
[27] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Springer-Verlag, Berlin 1066 (1984), pp. 122-141. | MR | Zbl
[28] Yua, G., Huanga, J., Zhou, Y.: A descent spectral conjugate gradient method for impulse noise removal. Appl. Math. Lett. 23 (2010), 555-560. | DOI | MR
[29] Yu, G., Qi, L., Sun, Y., Zhou, Y.: Impulse noise removal by a nonmonotone adaptive gradient method. Signal Process. 90 (2010), 2891-2897. | Zbl
[30] Zoutendijk, G.: Nonlinear programming computational methods. In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 37-86. | MR | Zbl
Cité par Sources :