Impulse noise removal based on new hybrid conjugate gradient approach
Kybernetika, Tome 52 (2016) no. 5, pp. 791-823 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.
Image denoising is a fundamental problem in image processing operations. In this paper, we present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regularization functional. The second phase of our algorithm inherits advantages of both Dai-Yuan (DY) and Hager-Zhang (HZ) conjugate gradient methods to produce the new direction. The descent property of new direction in each iteration and the global convergence results are established under some standard assumptions. Furthermore, we investigate some conjugate gradient algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.
DOI : 10.14736/kyb-2016-5-0791
Classification : 03D15, 68U10, 90C25, 90C30, 90C90
Keywords: image processing; impulse noise; unconstrained optimization; conjugate gradient method; Wolfe conditions; complexity analysis
@article{10_14736_kyb_2016_5_0791,
     author = {Kimiaei, Morteza and Rostami, Majid},
     title = {Impulse noise removal based on new hybrid conjugate gradient approach},
     journal = {Kybernetika},
     pages = {791--823},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.14736/kyb-2016-5-0791},
     mrnumber = {3602016},
     zbl = {06674940},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0791/}
}
TY  - JOUR
AU  - Kimiaei, Morteza
AU  - Rostami, Majid
TI  - Impulse noise removal based on new hybrid conjugate gradient approach
JO  - Kybernetika
PY  - 2016
SP  - 791
EP  - 823
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0791/
DO  - 10.14736/kyb-2016-5-0791
LA  - en
ID  - 10_14736_kyb_2016_5_0791
ER  - 
%0 Journal Article
%A Kimiaei, Morteza
%A Rostami, Majid
%T Impulse noise removal based on new hybrid conjugate gradient approach
%J Kybernetika
%D 2016
%P 791-823
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0791/
%R 10.14736/kyb-2016-5-0791
%G en
%F 10_14736_kyb_2016_5_0791
Kimiaei, Morteza; Rostami, Majid. Impulse noise removal based on new hybrid conjugate gradient approach. Kybernetika, Tome 52 (2016) no. 5, pp. 791-823. doi: 10.14736/kyb-2016-5-0791

[1] Barzilai, J., Borwein, J. M.: Two point step size gradient method. IMA J. Numer. Anal. 8 (1988), 141-148. | DOI | MR

[2] Bertalmio, M., Vese, L. A., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Trans. Image Processing. 12 (2003), 8, 882-889. | DOI

[3] Cai, J. F., Chan, R. H., Fiore, C. D.: Minimization of a detail-preserving regularization functional for impulse noise removal. J. Math. Imaging Vision. 27 (2007), 79-91. | DOI | MR

[4] Cai, J. F., Chan, R. H., Morini, B.: Minimization of an edge-preserving regularization functional by conjugate gradient type methods, image processing based on partial differential equations. In: Mathematics and Visualization, Springer, Berlin Heidelberg 2007, pp. 109-122. | DOI | MR

[5] Cai, J. F., Chan, R. H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Problem and Imaging. 2 (2008), 187-204. | DOI | MR | Zbl

[6] Cai, J. F., Chan, R. H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging and Vision 36 (2010), 46-53. | DOI | MR

[7] Chan, R., Hu, C., Nikolova, M.: Iterative procedure for removing random-valued impulse noise. IEEE Signal Process. Lett. 11 (2004), 12, 921-924. | DOI

[8] Chan, R. H., Ho, C. W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14 (2005), 1479-1485. | DOI

[9] Chan, T. F., Shen, J., Zhou, H.: Total variation wavelet inpainting. J. Math. Imaging Vision 25 (2006), 107-125. | DOI | MR

[10] Chen, T., Wu, H. R.: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8 (2001), 1-3. | DOI

[11] Dai, Y. H., Ni, Q.: Testing different conjugate gradient methods for large-scale unconstrained optimization. J. Comput. Math. 21 (2003), 311-320. | MR | Zbl

[12] Dai, Y. H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. IEEE SIAM J. Optim. 10 (1999), 177-182. | DOI | MR | Zbl

[13] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91 (2002), 2, 201-213. | DOI | MR | Zbl

[14] Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149-154. | DOI | MR | Zbl

[15] Gilbert, J. C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2 (1992), 21-42. | DOI | MR | Zbl

[16] Hager, W. W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005), 170-192. | DOI | MR | Zbl

[17] Hager, W. W., Zhang, H.: A survey of nonlinear conjugate gradeint methods. http://www.math.u.edu/$\sim$ hager, 2005. | MR

[18] Hestenes, M. R., Stiefel, E. L.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 (1952), 409-436. | DOI | MR | Zbl

[19] Hwang, H., Haddad, R. A.: Adaptive median filters: New algorithms and results. IEEE Trans. Image Process. 4 (1995), 499-502. | DOI | MR

[20] Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1989), 503-528. | DOI | MR | Zbl

[21] Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20 (2004), 1-2, 99-120. Special issue on mathematics and image analysis. | DOI | MR

[22] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980), 773-782. | DOI | MR | Zbl

[23] Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, New York 2006. | DOI | MR | Zbl

[24] Polyak, B. T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9 (1969), 94-112. | DOI

[25] Polyak, E., Ribière, G.: Note sur la convergence de directions conjugées. Francaise Informat Recherche Opertionelle, 3e Année 16 (1969), 35-43.

[26] Powell, M. J. D.: Restart procedures of the conjugate gradient method. Math. Prog. 2 (1977), 241-254. | DOI | MR

[27] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Springer-Verlag, Berlin 1066 (1984), pp. 122-141. | MR | Zbl

[28] Yua, G., Huanga, J., Zhou, Y.: A descent spectral conjugate gradient method for impulse noise removal. Appl. Math. Lett. 23 (2010), 555-560. | DOI | MR

[29] Yu, G., Qi, L., Sun, Y., Zhou, Y.: Impulse noise removal by a nonmonotone adaptive gradient method. Signal Process. 90 (2010), 2891-2897. | Zbl

[30] Zoutendijk, G.: Nonlinear programming computational methods. In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 37-86. | MR | Zbl

Cité par Sources :