Keywords: Archimedean copula; derived number; Dini derivative
@article{10_14736_kyb_2016_5_0785,
author = {Fern\'andez-S\'anchez, Juan and \'Ubeda-Flores, Manuel},
title = {Proving the characterization of {Archimedean} copulas via {Dini} derivatives},
journal = {Kybernetika},
pages = {785--790},
year = {2016},
volume = {52},
number = {5},
doi = {10.14736/kyb-2016-5-0785},
mrnumber = {3602015},
zbl = {06674939},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0785/}
}
TY - JOUR AU - Fernández-Sánchez, Juan AU - Úbeda-Flores, Manuel TI - Proving the characterization of Archimedean copulas via Dini derivatives JO - Kybernetika PY - 2016 SP - 785 EP - 790 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0785/ DO - 10.14736/kyb-2016-5-0785 LA - en ID - 10_14736_kyb_2016_5_0785 ER -
%0 Journal Article %A Fernández-Sánchez, Juan %A Úbeda-Flores, Manuel %T Proving the characterization of Archimedean copulas via Dini derivatives %J Kybernetika %D 2016 %P 785-790 %V 52 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0785/ %R 10.14736/kyb-2016-5-0785 %G en %F 10_14736_kyb_2016_5_0785
Fernández-Sánchez, Juan; Úbeda-Flores, Manuel. Proving the characterization of Archimedean copulas via Dini derivatives. Kybernetika, Tome 52 (2016) no. 5, pp. 785-790. doi: 10.14736/kyb-2016-5-0785
[1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore 2006. | DOI | MR | Zbl
[2] Amo, E. de, Carrillo, M. Díaz, Sánchez, J. Fernández: Characterization of all copulas associated with non-continuous random variables. Fuzzy Sets Syst. 191 (2012), 103-112. | DOI | MR
[3] Berg, L., Krüppel, M.: De Rahm's singular function and related functions. Z. Anal. Anw. 19 (2000), 227-237. | DOI | MR
[4] Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley Finance Series, John Wiley and Sons Ltd., Chichester 2004. | DOI | MR | Zbl
[5] Durante, F., Jaworski, P.: A new characterization of bivariate copulas. Comm. Statist. Theory Methods 39 (2010), 2901-2912. | DOI | MR | Zbl
[6] Durante, F., Sempi, C.: Principles of Copula Theory. Chapman and Hall/CRC, London 2015. | DOI | MR
[7] Genest, C., MacKay, J.: Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canad. J. Statist. 14 (1986), 145-159. | DOI | MR | Zbl
[8] Hagood, J. W., Thomson, B. S.: Recovering a function from a Dini derivative. Amer. Math. Monthly 113 (2006), 34-46. | DOI | MR | Zbl
[9] Jaworski, P., Durante, F., Härdle, W., (editors), T. Rychlik: Copula Theory and its Applications. Lecture Notes in Statistics-Proceedings, Springer, Berlin-Heidelberg 2010. | DOI | MR
[10] Ling, C. H.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189-212. | MR | Zbl
[11] Łojasiewicz, S.: An Introduction to the Theory of Real Functions. Third Edition. A Wiley-Interscience Publication, John Wiley and Sons Ltd., Chichester 1988. | MR
[12] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions. Ann. Stat. 37 (2009), 3059-3097. | DOI | MR
[13] McNeil, A. J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton 2005. | MR | Zbl
[14] Natanson, L. P.: Theory of Functions of a Real Variable. Vol. I, revised edition. Frederick Ungar Publishing, New York 1961. | MR
[15] Nelsen, R. B.: An Introduction to Copulas. Second Edition. Springer, New York 2006. | DOI | MR
[16] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. Reprinted, Dover, Mineola NY, 2005. | MR | Zbl
[17] Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. | MR
[18] Wysocki, W.: Characterizations of Archimedean n-copulas. Kybernetika 51 (2015), 212-230. | DOI | MR | Zbl
Cité par Sources :