Keywords: random walk; quarter-plane; reflected random walk; stationary distribution; error bound; Markov reward approach; linear programming
@article{10_14736_kyb_2016_5_0757,
author = {Goseling, Jasper and Boucherie, Richard J. and van Ommeren, Jan-Kees},
title = {A linear programming approach to error bounds for random walks in the quarter-plane},
journal = {Kybernetika},
pages = {757--784},
year = {2016},
volume = {52},
number = {5},
doi = {10.14736/kyb-2016-5-0757},
mrnumber = {3602014},
zbl = {06674938},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0757/}
}
TY - JOUR AU - Goseling, Jasper AU - Boucherie, Richard J. AU - van Ommeren, Jan-Kees TI - A linear programming approach to error bounds for random walks in the quarter-plane JO - Kybernetika PY - 2016 SP - 757 EP - 784 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0757/ DO - 10.14736/kyb-2016-5-0757 LA - en ID - 10_14736_kyb_2016_5_0757 ER -
%0 Journal Article %A Goseling, Jasper %A Boucherie, Richard J. %A van Ommeren, Jan-Kees %T A linear programming approach to error bounds for random walks in the quarter-plane %J Kybernetika %D 2016 %P 757-784 %V 52 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0757/ %R 10.14736/kyb-2016-5-0757 %G en %F 10_14736_kyb_2016_5_0757
Goseling, Jasper; Boucherie, Richard J.; van Ommeren, Jan-Kees. A linear programming approach to error bounds for random walks in the quarter-plane. Kybernetika, Tome 52 (2016) no. 5, pp. 757-784. doi: 10.14736/kyb-2016-5-0757
[1] Bayer, N., Boucherie, R. J.: On the structure of the space of geometric product-form models. Probab. Engrg. Inform. Sci. 16 (2002), 02, 241-270. | DOI | MR | Zbl
[2] Bertsimas, D., Paschalidis, I. C., Tsitsiklis, J. N.: Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance. Ann. Appl. Prob. 4 (1994), 1, 43-75. | DOI | MR | Zbl
[3] Boucherie, R. J., Dijk, N. M. van: Monotonicity and error bounds for networks of Erlang loss queues. Queueing Systems 62 (2009), 1-2, 159-193. | DOI | MR
[4] Chen, Y., Bai, X., Boucherie, R. J., Goseling, J.: Performance measures for the two-node queue with finite buffers. Under review at Performance Evaluation.
[5] Chen, Y., Boucherie, R. J., Goseling, J.: Invariant measures and error bounds for random walks in the quarter-plane based on sums of geometric terms. Under review at Queueing Systems. | Zbl
[6] Cohen, J. W., Boxma, O. J.: Boundary Value Problems in Queueing System Analysis. | Zbl
[7] Farias, D. P. de, Roy, B. Van: The linear programming approach to approximate dynamic programming. Oper. Res. 51 (2003), 6, 850-865. | DOI | MR
[8] Farias, D. P. de, Roy, B. Van: A cost-shaping linear program for average-cost approximate dynamic programming with performance guarantees. Math. Oper. Res. 31 (2006), 3, 597-620. | DOI | MR
[9] Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann-Hilbert problem. Probab. Theory Related Fields 47 (1979), 3, 325-351. | DOI | MR | Zbl
[10] Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter Plane: Algebraic Methods, Boundary Value Problems, and Applications. | MR | Zbl
[11] Goseling, J., Boucherie, R. J., Ommeren, J. C. W. van: Energy-delay tradeoff in a two-way relay with network coding. Perform. Evaluation 70 (2013), 11, 981-994. | DOI
[12] Kroese, D. P., Scheinhardt, W. R. W., Taylor, P. G.: Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process. Ann. Appl. Probab. 14 (2004), 4, 2057-2089. | DOI | MR | Zbl
[13] Kumar, S., Kumar, P. R.: Performance bounds for queueing networks and scheduling policies. IEEE Trans. Automat. Control 39 (1994), 8, 1600-1611. | DOI | MR | Zbl
[14] Latouche, G., Mahmoodi, S., Taylor, P. G.: Level-phase independent stationary distributions for GI/M/1-type Markov chains with infinitely-many phases. Perform. Evaluation 70 (2013), 9, 551-563. | DOI
[15] Miyazawa, M.: Tail decay rates in double QBD processes and related reflected random walks. Math. Oper. Res. 34 (2009), 3, 547-575. | DOI | MR | Zbl
[16] Morrison, J. R., Kumar, P. R.: New linear program performance bounds for queueing networks. J. Optim. Theory Appl. 100 (1999), 3, 575-597. | DOI | MR | Zbl
[17] M{ü}ller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, 2002. | MR | Zbl
[18] Taylor, P. G., Dijk, N. M. van: Strong stochastic bounds for the stationary distribution of a class of multicomponent performability models. Oper. Res. 46 (1998), 5, 665-674. | DOI | MR
[19] Dijk, N. M. van: Simple bounds for queueing systems with breakdowns. Perform. Evaluation 8 (1988), 2, 117-128. | DOI | MR
[20] Dijk, N. M. van: Sensitivity error bounds for non-exponential stochastic networks. Kybernetika 31 (1995), 2, 175-188. | MR
[21] Dijk, N. M. van: Error bounds for arbitrary approximations of "nearly reversible'' Markov chains and a communications example. Kybernetika 33 (1997), 2, 171-184. | MR
[22] Dijk, N. M. van: Bounds and error bounds for queueing networks. Ann. Oper. Res. 79 (1998), 295-319. | DOI | MR
[23] Dijk, N. M. van: Error bounds and comparison results: The Markov reward approach for queueing networks. In: Queueing Networks: A Fundamental Approacm (R. J. Boucherie and N. M. Van Dijk, eds.), International Series in Operations Research and Management Science 154, Springer, 2011, pp. 397-459. | DOI | MR
[24] Dijk, N. M. van, Lamond, B. F.: Simple bounds for finite single-server exponential tandem queues. Oper. Res. 36 (1998), 3, 470-477. | DOI | MR
[25] Dijk, N. M. van, Miyazawa, M.: Error bounds for perturbing nonexponential queues. Math. Oper. Res. 29 (2004), 3, 525-558. | DOI | MR
[26] Dijk, N. M. van, Puterman, M. L.: Perturbation theory for Markov reward processes with applications to queueing systems. Adv. Appl. Probab. 20 (1998), 1, 79-98. | DOI | MR
Cité par Sources :