On convergence of kernel density estimates in particle filtering
Kybernetika, Tome 52 (2016) no. 5, pp. 735-756 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.
The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.
DOI : 10.14736/kyb-2016-5-0735
Classification : 65C35
Keywords: particle filter; kernel methods; Fourier analysis
@article{10_14736_kyb_2016_5_0735,
     author = {Coufal, David},
     title = {On convergence of kernel density estimates in particle filtering},
     journal = {Kybernetika},
     pages = {735--756},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.14736/kyb-2016-5-0735},
     mrnumber = {3602013},
     zbl = {06674937},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0735/}
}
TY  - JOUR
AU  - Coufal, David
TI  - On convergence of kernel density estimates in particle filtering
JO  - Kybernetika
PY  - 2016
SP  - 735
EP  - 756
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0735/
DO  - 10.14736/kyb-2016-5-0735
LA  - en
ID  - 10_14736_kyb_2016_5_0735
ER  - 
%0 Journal Article
%A Coufal, David
%T On convergence of kernel density estimates in particle filtering
%J Kybernetika
%D 2016
%P 735-756
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0735/
%R 10.14736/kyb-2016-5-0735
%G en
%F 10_14736_kyb_2016_5_0735
Coufal, David. On convergence of kernel density estimates in particle filtering. Kybernetika, Tome 52 (2016) no. 5, pp. 735-756. doi: 10.14736/kyb-2016-5-0735

[1] Brabec, J., Hrůza, B.: Matematická analýza II (Mathematical Analysis II, in Czech). SNTL/ALFA, 1986.

[2] Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Processing 50 (2002), 3, 736-746. | DOI | MR

[3] Crisan, D., Míguez, J.: Particle-kernel estimation of the filter density in state-space models. Bernoulli 20 (2014), 4, 1879-1929. | DOI | MR | Zbl

[4] Doucet, A., Freitas, N. de, (Eds.), N. Gordon: Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York 2001. | DOI | MR | Zbl

[5] Doucet, A., Johansen, A. M.: A tutorial on particle filtering and smoothing: fifteen years later. In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011.

[6] Fristedt, B., Jain, N., Krylov, N.: Filtering and Prediction: A Primer. American Mathematical Society, 2007. | DOI | MR | Zbl

[7] Givens, G. H.: Consistency of the local kernel density estimator. Statist. Probab. Lett. 25 (1995), 55-61. | DOI | MR | Zbl

[8] Heine, K., Crisan, D.: Uniform approximations of discrete-time filters. Adv. Appl. Probab. 40 (2008), 4, 979-1001. | DOI | MR | Zbl

[9] Hürzeler, M., Künsch, H. R.: Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist. 7 (1998), 2, 175-193. | DOI | MR

[10] Künsch, H. R.: Recursive Monte Carlo filters: Algorithms and theoretical bounds. Ann. Statist. 33 (2005), 5, 1983-2021. | DOI | MR

[11] Gland, F. Le, Oudjane, N.: Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Ann. Appl. Probab. 14 (2004), 1, 144-187. | DOI | MR | Zbl

[12] Moral, P. Del, Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. | DOI | MR

[13] Musso, C., Oudjane, N., Gland, F. Le: Improving regularised particle filters. In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. | DOI | MR | Zbl

[14] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962), 3, 1065-1076. | DOI | MR | Zbl

[15] Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, 2013. | MR | Zbl

[16] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC, London, New York 1986. | DOI | MR | Zbl

[17] Tsybakov, A. B.: Introduction to Nonparametric Estimation. Springer, 2009. | DOI | MR | Zbl

[18] Wand, M. P., Jones, M. C.: Kernel Smoothing. Chapman and Hall/CRC, London, New York 1995. | DOI | MR | Zbl

Cité par Sources :