Keywords: particle filter; kernel methods; Fourier analysis
@article{10_14736_kyb_2016_5_0735,
author = {Coufal, David},
title = {On convergence of kernel density estimates in particle filtering},
journal = {Kybernetika},
pages = {735--756},
year = {2016},
volume = {52},
number = {5},
doi = {10.14736/kyb-2016-5-0735},
mrnumber = {3602013},
zbl = {06674937},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0735/}
}
Coufal, David. On convergence of kernel density estimates in particle filtering. Kybernetika, Tome 52 (2016) no. 5, pp. 735-756. doi: 10.14736/kyb-2016-5-0735
[1] Brabec, J., Hrůza, B.: Matematická analýza II (Mathematical Analysis II, in Czech). SNTL/ALFA, 1986.
[2] Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Processing 50 (2002), 3, 736-746. | DOI | MR
[3] Crisan, D., Míguez, J.: Particle-kernel estimation of the filter density in state-space models. Bernoulli 20 (2014), 4, 1879-1929. | DOI | MR | Zbl
[4] Doucet, A., Freitas, N. de, (Eds.), N. Gordon: Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York 2001. | DOI | MR | Zbl
[5] Doucet, A., Johansen, A. M.: A tutorial on particle filtering and smoothing: fifteen years later. In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011.
[6] Fristedt, B., Jain, N., Krylov, N.: Filtering and Prediction: A Primer. American Mathematical Society, 2007. | DOI | MR | Zbl
[7] Givens, G. H.: Consistency of the local kernel density estimator. Statist. Probab. Lett. 25 (1995), 55-61. | DOI | MR | Zbl
[8] Heine, K., Crisan, D.: Uniform approximations of discrete-time filters. Adv. Appl. Probab. 40 (2008), 4, 979-1001. | DOI | MR | Zbl
[9] Hürzeler, M., Künsch, H. R.: Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist. 7 (1998), 2, 175-193. | DOI | MR
[10] Künsch, H. R.: Recursive Monte Carlo filters: Algorithms and theoretical bounds. Ann. Statist. 33 (2005), 5, 1983-2021. | DOI | MR
[11] Gland, F. Le, Oudjane, N.: Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Ann. Appl. Probab. 14 (2004), 1, 144-187. | DOI | MR | Zbl
[12] Moral, P. Del, Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. | DOI | MR
[13] Musso, C., Oudjane, N., Gland, F. Le: Improving regularised particle filters. In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. | DOI | MR | Zbl
[14] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962), 3, 1065-1076. | DOI | MR | Zbl
[15] Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, 2013. | MR | Zbl
[16] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC, London, New York 1986. | DOI | MR | Zbl
[17] Tsybakov, A. B.: Introduction to Nonparametric Estimation. Springer, 2009. | DOI | MR | Zbl
[18] Wand, M. P., Jones, M. C.: Kernel Smoothing. Chapman and Hall/CRC, London, New York 1995. | DOI | MR | Zbl
Cité par Sources :