Keywords: idempotent; max-plus; tropical; network; dynamic programming; game theory; command and control
@article{10_14736_kyb_2016_5_0666,
author = {M. McEneaney, William and Pandey, Amit},
title = {An idempotent algorithm for a class of network-disruption games},
journal = {Kybernetika},
pages = {666--695},
year = {2016},
volume = {52},
number = {5},
doi = {10.14736/kyb-2016-5-0666},
mrnumber = {3602010},
zbl = {06674934},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0666/}
}
TY - JOUR AU - M. McEneaney, William AU - Pandey, Amit TI - An idempotent algorithm for a class of network-disruption games JO - Kybernetika PY - 2016 SP - 666 EP - 695 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-5-0666/ DO - 10.14736/kyb-2016-5-0666 LA - en ID - 10_14736_kyb_2016_5_0666 ER -
M. McEneaney, William; Pandey, Amit. An idempotent algorithm for a class of network-disruption games. Kybernetika, Tome 52 (2016) no. 5, pp. 666-695. doi: 10.14736/kyb-2016-5-0666
[1] Akian, M.: Densities of idempotent measures and large deviations. Trans. Amer. Math. Soc. 351 (1999), 4515-4543. | DOI | MR | Zbl
[2] Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47 (2008), 817-848. | DOI | MR | Zbl
[3] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J.-P.: Synchronization and Linearity. Wiley, New York 1992. | MR | Zbl
[4] Cohen, G., Gaubert, S., Quadrat, J.-P.: Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379 (2004), 395-422. | DOI | MR | Zbl
[5] Elliot, N. J., Kalton, N. J.: The existence of value in differential games. Mem. Amer. Math. Soc. 126 (1972). | DOI | MR
[6] Fleming, W. H.: Max-plus stochastic processes. Appl. Math. Optim. 49 (2004), 159-181. | DOI | MR | Zbl
[7] Fleming, W. H., Kaise, H., Sheu, S.-J.: Max-plus stochastic control and risk-sensitivity. Applied Math. Optim. 62 (2010), 81-144. | DOI | MR | Zbl
[8] Gaubert, S., McEneaney, W. M.: Min-max spaces and complexity reduction in min-max expansions. Applied Math. Optim. 65 (2012), 315-348. | DOI | MR | Zbl
[9] Gaubert, S., Qu, Z., Sridharan, S.: Bundle-based pruning in the max-plus curse of dimensionality free method. In: Proc. 21st Int. Symp. Math. Theory of Networks and Systems 2014.
[10] Heidergott, B., Olsder, G. J., Woude, J. van der: Max-Plus at Work: Modeling and Analysis of Synchronized Systems. Princeton Univ. Press 2006. | DOI | MR
[11] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and Its Applications. Kluwer 1997. | DOI | MR | Zbl
[12] Litvinov, G. L., Maslov, V. P., Shpiz, G. B.: Idempotent functional analysis: an algebraic approach. Math. Notes 69 (2001), 696-729. | DOI | MR | Zbl
[13] McEneaney, W. M.: Distributed dynamic programming for discrete-time stochastic control, and idempotent algorithms. Automatica 47 (2011), 443-451. | DOI | MR | Zbl
[14] McEneaney, W. M.: Max-Plus Methods for Nonlinear Control and Estimation. Birk\-hau\-ser, Boston 2006. | DOI | MR | Zbl
[15] McEneaney, W. M.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control Optim. 46 (2007), 1239-1276. | DOI | MR | Zbl
[16] McEneaney, W. M.: Idempotent method for deception games. In: Proc. 2011 Amer. Control Conf., pp. 4051-4056. | DOI
[17] McEneaney, W. M., Desir, A.: Games of network disruption and idempotent algorithms. In: Proc. European Control Conf. 2013, pp. 702-709.
[18] McEneaney, W. M.: Idempotent algorithms for discrete-time stochastic control through distributed dynamic programming. In: Proc. IEEE CDC 2009, pp. 1569-1574. | DOI
[19] McEneaney, W. M., Charalambous, C. D.: Large deviations theory, induced log-plus and max-plus measures and their applications. In: Proc. Math. Theory Networks and Sys. 2000.
[20] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces I. Optimization 56 (2007) 171-205. | DOI | MR | Zbl
[21] Puhalskii, A.: Large Deviations and Idempotent Probability. Chapman and Hall/CRC Press 2001. | DOI | MR | Zbl
[22] Qu, Z.: A max-plus based randomized algorithm for solving a class of HJB PDEs. In: Proc. 53rd IEEE Conf. on Dec. and Control 2014. | DOI
[23] Rubinov, A. M., Singer, I.: Topical and sub-topical functions, downward sets and abstract convexity. Optimization 50 (2001), 307-351. | DOI | MR | Zbl
[24] Singer, I.: Abstract Convex Analysis. Wiley-Interscience, New York 1997. | MR | Zbl
Cité par Sources :