Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation
Kybernetika, Tome 52 (2016) no. 4, pp. 607-628 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated.
In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated.
DOI : 10.14736/kyb-2016-4-0607
Classification : 65L99, 70K99
Keywords: complex dynamic networks; synchronization; time delay; noise perturbation
@article{10_14736_kyb_2016_4_0607,
     author = {Ma, Zhi-cai and Sun, Yong-zheng and Shi, Hong-jun},
     title = {Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation},
     journal = {Kybernetika},
     pages = {607--628},
     year = {2016},
     volume = {52},
     number = {4},
     doi = {10.14736/kyb-2016-4-0607},
     mrnumber = {3565772},
     zbl = {06644313},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0607/}
}
TY  - JOUR
AU  - Ma, Zhi-cai
AU  - Sun, Yong-zheng
AU  - Shi, Hong-jun
TI  - Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation
JO  - Kybernetika
PY  - 2016
SP  - 607
EP  - 628
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0607/
DO  - 10.14736/kyb-2016-4-0607
LA  - en
ID  - 10_14736_kyb_2016_4_0607
ER  - 
%0 Journal Article
%A Ma, Zhi-cai
%A Sun, Yong-zheng
%A Shi, Hong-jun
%T Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation
%J Kybernetika
%D 2016
%P 607-628
%V 52
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0607/
%R 10.14736/kyb-2016-4-0607
%G en
%F 10_14736_kyb_2016_4_0607
Ma, Zhi-cai; Sun, Yong-zheng; Shi, Hong-jun. Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation. Kybernetika, Tome 52 (2016) no. 4, pp. 607-628. doi: 10.14736/kyb-2016-4-0607

[1] Arenas, A., Kurths, J., Moreno, Y., Zhou, C. S.: Synchronization in complex networks. Phys. Rep. 469 (2008), 93-153. | DOI | MR

[2] Asheghan, M. M., Míguez, J., Hamidi-Beheshti, M. T., Tavazoe, M. S.: Robust outer synchronization between two complex networks with fractional order dynamics. Chaos 21 (2011), 033121. | DOI | MR

[3] Barabasi, A. L.: Scal-free networks: a decade and beyond. Science 325 (2009), 412-413. | DOI | MR

[4] Barabasi, A. L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999), 509-512. | DOI | MR | Zbl

[5] Blat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems. SIAM. J. Control Optim. 38 (2000), 751-766. | DOI | MR

[6] Guo, W. L., Austin, F., Chen, S.H.: Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1631-1639. | DOI | MR | Zbl

[7] Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press 1988. | MR | Zbl

[8] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, E.: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906. | DOI | MR

[9] Huang, J. J., Li, C. D., Huang, T. W., He, X.: Finite-time lag synchronization of delayed neural networks. Neurocomputing 139 (2013), 145-149. | DOI

[10] Huang, X. Q., Lin, W., Yang, B.: Global finite-time synchronization of a class of uncertain nonlinear systems. Automatica 41 (2005), 881-888. | DOI | MR

[11] Kazanovich, Y. B., Borisyuk, R. M.: Synchronization in a neural network of phase oscillators with the central element. Biological Cybernetics 71 (1994), 177-185. | DOI | MR | Zbl

[12] Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg 1992. | DOI | MR | Zbl

[13] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121. | DOI

[14] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567. | MR

[15] Li, L., Kurths, J., Peng, H., Yang, Y., Luo, Q.: Exponentially asymptotic synchronization of uncertain complex time-delay dynamical networks. The European Physical Journal B 86 (2013), 1-9. | DOI | MR

[16] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134. | DOI | MR | Zbl

[17] Lü, J. H., Yu, X. H., Chen, G. R.: Chaos synchronization of general complex dynamical networks. Physica A 334 (2004), 281-302. | DOI | MR

[18] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1-18. | MR | Zbl

[19] Mei, J., Jiang, M. H., Xu, W. M., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 2462-2478. | DOI | MR | Zbl

[20] Nagail, K. H., Kori, H.: Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Phys. Rev.E 81 (2010), 065202. | DOI

[21] Pecora, L. M., Carrol, T. L.: Master stability functions for synchronized coupled system. Phys. Rev. Lett. 80 (1998), 2109-2112. | DOI

[22] Sun, W. G., Li, S. X.: Generalized outer synchronization between two uncertain dynamical networks. Nonlinear Dyn. 77 (2014), 481-489. | DOI | MR | Zbl

[23] Sun, Y. Z., Li, W., Ruan, J.: Generalized outer synchronization between complex dynamic networks with time delay and noise perturbation. Commun. Nonliear Sci. Numer. Simul. 18 (2013), 989-998. | DOI | MR

[24] Sun, F., Peng, H., Luo, Q., Li, L., Yang, Y.: Parameter identification and projective synchronization between different chaotic systems. Chaos 19 (2009), 023109. | DOI | MR | Zbl

[25] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113. | DOI

[26] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dyn. 76 (2014), 519-528. | DOI | MR | Zbl

[27] Tang, H. W., Chen, L., Lu, J. A., Tse, C. K.: Adaptive synchronization between two nonidentical topological structures. Physica A 387 (2008), 5623-5630. | DOI

[28] Wang, G. J., Cao, J. D., Lu, J. Q.: Outer synchronization between two nonidentical networks with circumstance noise. Physica A 389 (2010), 1480-1488. | DOI

[29] Wang, X. F., Chen, G. R.: Synchronization in scal-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49 (2002), 54-62. | DOI | MR

[30] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849. | DOI | MR | Zbl

[31] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding model control. Commun. Nonlinear Sci. Numer. Simulat. 14 (2012), 2728-2733. | DOI | MR

[32] Wang, W., Li, L., Peng, H., Xiao, J., Yang, Y.: Synchronization control of memristor-based recurrent neural networks with perturbations. Neural Networks. 53 (2014), 8-14. | DOI | Zbl

[33] Wang, W. P., Peng, H. P., Li, L. X., Xiao, J. H., Yang, Y. X.: Finite-time function projective synchronization in complex multi-links networks with time-varying delay. Neural Process. Lett. 41 (2015), 71-88. | DOI

[34] Watts, D. J., Strogatz, S. H.: Collective dynamics of small-world networks. Nature 393 (1998), 440-442. | DOI

[35] Yang, X. S., Cao, J. D.: Finite-time stochastic synchronization of complex networks. App. Math. Modeling. 34 (2010), 3631-3641. | DOI | MR | Zbl

[36] Yu, W. W., Chen, G. R., Lü, J. H.: On pinning synchronization of complex dynamical networks. | Zbl

[37] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642. | DOI | MR | Zbl

[38] Zhou, C. S., Motter, A. E., Kurths, J.: Universality in the synchronization of weighted random networks. Phys. Rev. Lett. 96 (2006), 034101. | DOI

Cité par Sources :