Keywords: bipolar fuzzy relation equations; bipolar variables; linear optimization; modified branch and bound method; max-parametric hamacher compositions
@article{10_14736_kyb_2016_4_0531,
author = {Aliannezhadi, Samaneh and Abbasi Molai, Ali and Hedayatfar, Behnaz},
title = {Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints},
journal = {Kybernetika},
pages = {531--557},
year = {2016},
volume = {52},
number = {4},
doi = {10.14736/kyb-2016-4-0531},
mrnumber = {3565768},
zbl = {06644309},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0531/}
}
TY - JOUR AU - Aliannezhadi, Samaneh AU - Abbasi Molai, Ali AU - Hedayatfar, Behnaz TI - Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints JO - Kybernetika PY - 2016 SP - 531 EP - 557 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0531/ DO - 10.14736/kyb-2016-4-0531 LA - en ID - 10_14736_kyb_2016_4_0531 ER -
%0 Journal Article %A Aliannezhadi, Samaneh %A Abbasi Molai, Ali %A Hedayatfar, Behnaz %T Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints %J Kybernetika %D 2016 %P 531-557 %V 52 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0531/ %R 10.14736/kyb-2016-4-0531 %G en %F 10_14736_kyb_2016_4_0531
Aliannezhadi, Samaneh; Abbasi Molai, Ali; Hedayatfar, Behnaz. Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints. Kybernetika, Tome 52 (2016) no. 4, pp. 531-557. doi: 10.14736/kyb-2016-4-0531
[1] Molai, A. Abbasi: Linear optimization with mixed fuzzy relation inequality constraints using the pseudo-t-norms and its application. Soft Computing 19 (2015), 3009-3027. | DOI
[2] Chen, L., Wang, P. P.: Fuzzy relation equations (I): The general and specialized solving algorithms. Soft Computing 6 (2002), 428-435. | DOI | Zbl
[3] Chen, L., Wang, P. P.: Fuzzy relation equations (II): The branch-poit-solutions and the categorized minimal solutions. Soft Computing 11 (2007), 33-40. | DOI
[4] Baets, B. De: Analytical solution methods for fuzzy relational equations. In: Fundamentals of fuzzy sets, the handbooks of fuzzy sets series (D. Dubois and H. Prade, eds.), Dordrecht, Kluwer 2000, Vol. 1, pp. 291-340. | DOI | MR | Zbl
[5] Nola, A. Di, Pedrycz, W., Sessa, S.: On solution of fuzzy relational equations and their characterization. BUSEFAL 12 (1982), 60-71.
[6] Nola, A. Di, Pedrycz, W., Sessa, S., Sanchez, E.: Fuzzy relation equations theory as a basis of fuzzy modelling: An overview. Fuzzy Sets and Systems 40 (1991), 415-429. | DOI | MR | Zbl
[7] Nola, A. Di, Pedrycz, W., Sessa, S., Wang, P. Z.: Fuzzy relation equations under triangular norms: a survey and new results. Stochastica 8 (1984), 99-145. | MR
[8] Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and their Applications to Knowledge Engineering. Kluwer, Dordrecht 1989. | DOI | MR | Zbl
[9] Fang, S.-C., Li, G.: Solving fuzzy relation equations with a linear objective function. Fuzzy Sets and Systems 103 (1999), 107-113. | DOI | MR | Zbl
[10] Feng, S., Ma, Y., Li, J.: A kind of nonlinear and non-convex optimization problems under mixed fuzzy relational equations constraints with max-min and max-average composition. In: Eighth International Conference on Computational Intelligence and Security, Guangzhou 2012. | DOI
[11] Freson, S., Baets, B. De, Meyer, H. De: Linear optimization with bipolar max-min constraints. Inform. Sci. 234 (2013), 3-15. | DOI | MR | Zbl
[12] Gottwald, S.: Fuzzy Sets and Fuzzy Logic: The Foundations of Application From a Mathematical Point of View. Vieweg, Wiesbaden 1993. | DOI | MR | Zbl
[13] Gottwald, S.: Generalized Solvability Behaviour for Systems of Fuzzy Equations. In: Discovering the world with fuzzy logic (V. Novák and I. Perfilieva, eds.), Physica-Verlag, Heidelberg 2000, pp. 401-430. | MR | Zbl
[14] Guu, S.-M., Wu, Y.-K.: Minimizing a linear objective function with fuzzy relation equation constraints. Fuzzy Optimization and Decision Making 1 (2002), 347-360. | DOI | MR | Zbl
[15] Guu, S.-M., Wu, Y.-K.: Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint. Fuzzy Sets and Systems 161 (2010), 285-297. | DOI | MR | Zbl
[16] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper Saddle River, Prentice Hall, NJ 1995. | DOI | MR | Zbl
[17] Li, J., Feng, S., Mi, H.: A Kind of nonlinear programming problem based on mixed fuzzy relation equations constraints. Physics Procedia 33 (2012), 1717-1724. | DOI
[18] Li, P., Fang, S.-C.: A survey on fuzzy relational equations, Part I: Classification and solvability. Fuzzy Optimization and Decision Making 8 (2009), 179-229. | DOI | MR
[19] Li, P., Jin, Q.: Fuzzy relational equations with min-biimplication composition. Fuzzy Optimization and Decision Making 11 (2012), 227-240. | DOI | MR | Zbl
[20] Li, P., Jin, Q.: On the resolution of bipolar max-min equations. In: IEEE Trans. Fuzzy Systems, second review, 2013.
[21] Li, P., Liu, Y.: Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm. Soft Computing 18 (2014), 1399-1404. | DOI | Zbl
[22] Loetamonphong, J., Fang, S.-C.: Optimization of fuzzy relation equations with max-product composition. Fuzzy Sets and Systems 118 (2001), 509-517. | DOI | MR | Zbl
[23] Markovskii, A.: Solution of fuzzy equations with max-product composition in inverse control and decision making problems. Automation and Remote Control 65 (2004), 1486-1495. | DOI | MR | Zbl
[24] Markovskii, A.: On the relation between equations with max-product composition and the covering problem. Fuzzy Sets and Systems 153 (2005), 261-273. | DOI | MR | Zbl
[25] Miyakoshi, M., Shimbo, M.: Solutions of composite fuzzy relational equations with triangular norms. Fuzzy Sets and Systems 16 (1985), 53-63. | DOI | MR | Zbl
[26] Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Research Studies Press/Wiely, New York 1989. | MR | Zbl
[27] Pedrycz, W.: Processing in relational structures: Fuzzy relational equations. Fuzzy Sets and Systems 40 (1991), 77-106. | DOI | MR | Zbl
[28] Peeva, K., Kyosev, Y.: Fuzzy Relational Calculus: Theory, Applications and Software. World Scientific, New Jersey 2004. | MR | Zbl
[29] Sanchez, E.: Resolution of composite fuzzy relation equation. Inform. Control 30 (1976), 38-48. | DOI | MR
[30] Sanchez, E.: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic. In: Fuzzy Automata and Decision Processes (M. M. Gupta, G. N. Saridis, B. R. Gaines, eds.), North-Holland, Amsterdam 1977, pp. 221-234. | MR
[31] Shieh, B.-S.: Minimizing a linear objective function under a fuzzy max-t norm relation equation constraint. Inform. Sci. 181 (2011), 832-841. | DOI | MR | Zbl
[32] Thapar, A., Pandey, D., Gaur, S. K.: Optimization of linear objective function with max-t fuzzy relation equations. Applied Soft Computing 9 (2009), 1097-1101. | DOI
[33] Wu, Y.-K., Guu, S.-M.: A note on fuzzy relation programming problems with max-strict-t-norm composition. Fuzzy Optimization and Decision Making 3 (2004), 271-278. | DOI | MR | Zbl
[34] Wu, Y.-K., Guu, S.-M.: Minimizing a linear function under a fuzzy max-min relational equation constraint. Fuzzy Sets and Systems 150 (2005), 147-162. | DOI | MR | Zbl
[35] Wu, Y.-K., Guu, S.-M., Liu, J. Y.-C.: An accelerated approach for solving fuzzy relation equations with a linear objective function. IEEE Trans. Fuzzy Systems 10 (2002), 552-558. | DOI
[36] Yang, S.-J.: An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition-min composition. Fuzzy Sets and Systems 255 (2014), 41-51. | DOI | MR | Zbl
Cité par Sources :