Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
Kybernetika, Tome 52 (2016) no. 4, pp. 497-513
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ is the unique solution of the system $A\otimes y=x$ in $\mbox{\boldmath$X$}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ is the unique solution of the system $A\otimes y=x$ in $\mbox{\boldmath$X$}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
DOI : 10.14736/kyb-2016-4-0497
Classification : 08A72, 15A18, 15A80
Keywords: max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set
@article{10_14736_kyb_2016_4_0497,
     author = {Plavka, J\'an and Sergeev, Serge\u{i}},
     title = {Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring},
     journal = {Kybernetika},
     pages = {497--513},
     year = {2016},
     volume = {52},
     number = {4},
     doi = {10.14736/kyb-2016-4-0497},
     mrnumber = {3565766},
     zbl = {06644307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0497/}
}
TY  - JOUR
AU  - Plavka, Ján
AU  - Sergeev, Sergeĭ
TI  - Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
JO  - Kybernetika
PY  - 2016
SP  - 497
EP  - 513
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0497/
DO  - 10.14736/kyb-2016-4-0497
LA  - en
ID  - 10_14736_kyb_2016_4_0497
ER  - 
%0 Journal Article
%A Plavka, Ján
%A Sergeev, Sergeĭ
%T Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
%J Kybernetika
%D 2016
%P 497-513
%V 52
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0497/
%R 10.14736/kyb-2016-4-0497
%G en
%F 10_14736_kyb_2016_4_0497
Plavka, Ján; Sergeev, Sergeĭ. Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring. Kybernetika, Tome 52 (2016) no. 4, pp. 497-513. doi: 10.14736/kyb-2016-4-0497

[1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. | DOI | MR | Zbl

[2] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. | DOI

[3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051. | DOI | MR

[4] Cechlárová, K.: Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy algebra. Fuzzy Sets and Systems 75 (1995), 165-177. | DOI | MR | Zbl

[5] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. | MR | Zbl

[6] Cechlárová, K.: On the powers of matrices in bottleneck/fuzzy algebra. Linear Algebra Appl. 246 (1996), 97-112. | DOI | MR | Zbl

[7] Cuninghame-Green, R. A.: Minimax algebra and applications. Adv. Imaging Electron Phys. 90 (1995), 1-121. | DOI | Zbl

[8] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz's logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. | DOI | MR | Zbl

[9] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images. Inform. Sci. 177 (2007), 1481-1498. | DOI | MR | Zbl

[10] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.

[11] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.

[12] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Appl. Math. 45 (2008), 533-542. | MR | Zbl

[13] Golan, J. S.: Semirings and Their Applications. Springer, 1999. | DOI | MR | Zbl

[14] Gondran, M., Minoux, M.: Graphs, dioids and semirings: new models and algorithms. Springer, 2008. | MR | Zbl

[15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work. Princeton University Press, 2005. | DOI

[16] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997. | DOI | MR | Zbl

[17] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht-Boston-London 1998. | DOI | MR | Zbl

[18] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics. AMS, Contemporary Mathematics 377, 2005. | DOI | MR | Zbl

[19] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics. AMS, Contemporary Mathematics 495, 2009. | DOI | MR | Zbl

[20] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 8, 3350-3364. | DOI | MR

[21] Myšková, H., Plavka, J.: The X-robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 6, 2757-2769. | DOI | MR

[22] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. | DOI

[23] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. | DOI

[24] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.

[25] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Appl. Math. 159 (2011), 5, 381-388. | DOI | MR | Zbl

[26] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. | MR | Zbl

[27] Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126 (1989), 39-78. | DOI | MR | Zbl

[28] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. | DOI | MR | Zbl

[29] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. | DOI | MR | Zbl

[30] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Linear Algebra Appl. 283 (1998), 257-272. | DOI | MR | Zbl

[31] Zimmernann, K.: Extremální algebra (in Czech). Ekon.ústav ČSAV Praha, 1976.

Cité par Sources :