Keywords: max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set
@article{10_14736_kyb_2016_4_0497,
author = {Plavka, J\'an and Sergeev, Serge\u{i}},
title = {Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring},
journal = {Kybernetika},
pages = {497--513},
year = {2016},
volume = {52},
number = {4},
doi = {10.14736/kyb-2016-4-0497},
mrnumber = {3565766},
zbl = {06644307},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0497/}
}
TY - JOUR
AU - Plavka, Ján
AU - Sergeev, Sergeĭ
TI - Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
JO - Kybernetika
PY - 2016
SP - 497
EP - 513
VL - 52
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0497/
DO - 10.14736/kyb-2016-4-0497
LA - en
ID - 10_14736_kyb_2016_4_0497
ER -
%0 Journal Article
%A Plavka, Ján
%A Sergeev, Sergeĭ
%T Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring
%J Kybernetika
%D 2016
%P 497-513
%V 52
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-4-0497/
%R 10.14736/kyb-2016-4-0497
%G en
%F 10_14736_kyb_2016_4_0497
Plavka, Ján; Sergeev, Sergeĭ. Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring. Kybernetika, Tome 52 (2016) no. 4, pp. 497-513. doi: 10.14736/kyb-2016-4-0497
[1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. | DOI | MR | Zbl
[2] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. | DOI
[3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051. | DOI | MR
[4] Cechlárová, K.: Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy algebra. Fuzzy Sets and Systems 75 (1995), 165-177. | DOI | MR | Zbl
[5] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. | MR | Zbl
[6] Cechlárová, K.: On the powers of matrices in bottleneck/fuzzy algebra. Linear Algebra Appl. 246 (1996), 97-112. | DOI | MR | Zbl
[7] Cuninghame-Green, R. A.: Minimax algebra and applications. Adv. Imaging Electron Phys. 90 (1995), 1-121. | DOI | Zbl
[8] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz's logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. | DOI | MR | Zbl
[9] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images. Inform. Sci. 177 (2007), 1481-1498. | DOI | MR | Zbl
[10] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[11] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
[12] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Appl. Math. 45 (2008), 533-542. | MR | Zbl
[13] Golan, J. S.: Semirings and Their Applications. Springer, 1999. | DOI | MR | Zbl
[14] Gondran, M., Minoux, M.: Graphs, dioids and semirings: new models and algorithms. Springer, 2008. | MR | Zbl
[15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work. Princeton University Press, 2005. | DOI
[16] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997. | DOI | MR | Zbl
[17] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht-Boston-London 1998. | DOI | MR | Zbl
[18] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics. AMS, Contemporary Mathematics 377, 2005. | DOI | MR | Zbl
[19] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics. AMS, Contemporary Mathematics 495, 2009. | DOI | MR | Zbl
[20] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 8, 3350-3364. | DOI | MR
[21] Myšková, H., Plavka, J.: The X-robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 6, 2757-2769. | DOI | MR
[22] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. | DOI
[23] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. | DOI
[24] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[25] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Appl. Math. 159 (2011), 5, 381-388. | DOI | MR | Zbl
[26] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. | MR | Zbl
[27] Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126 (1989), 39-78. | DOI | MR | Zbl
[28] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. | DOI | MR | Zbl
[29] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. | DOI | MR | Zbl
[30] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Linear Algebra Appl. 283 (1998), 257-272. | DOI | MR | Zbl
[31] Zimmernann, K.: Extremální algebra (in Czech). Ekon.ústav ČSAV Praha, 1976.
Cité par Sources :