Model following control system with time delays
Kybernetika, Tome 52 (2016) no. 3, pp. 478-495 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part $f(v(t))$ of the controlled object as $||f(v(t))||\leq\alpha+\beta||v(t)||^\gamma$, and show the bounded of internal states by separating the nonlinear part into $\gamma\geq 0$. Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method.
Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part $f(v(t))$ of the controlled object as $||f(v(t))||\leq\alpha+\beta||v(t)||^\gamma$, and show the bounded of internal states by separating the nonlinear part into $\gamma\geq 0$. Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method.
DOI : 10.14736/kyb-2016-3-0478
Classification : 93C10
Keywords: time delays; model following control system (MFCS); internal stable; nonlinear system
@article{10_14736_kyb_2016_3_0478,
     author = {Wang, Dazhong and Wu, Shujing and Zhang, Wei and Wang, Guoqiang and Wu, Fei and Okubo, Shigenori},
     title = {Model following control system with time delays},
     journal = {Kybernetika},
     pages = {478--495},
     year = {2016},
     volume = {52},
     number = {3},
     doi = {10.14736/kyb-2016-3-0478},
     mrnumber = {3532518},
     zbl = {06644306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0478/}
}
TY  - JOUR
AU  - Wang, Dazhong
AU  - Wu, Shujing
AU  - Zhang, Wei
AU  - Wang, Guoqiang
AU  - Wu, Fei
AU  - Okubo, Shigenori
TI  - Model following control system with time delays
JO  - Kybernetika
PY  - 2016
SP  - 478
EP  - 495
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0478/
DO  - 10.14736/kyb-2016-3-0478
LA  - en
ID  - 10_14736_kyb_2016_3_0478
ER  - 
%0 Journal Article
%A Wang, Dazhong
%A Wu, Shujing
%A Zhang, Wei
%A Wang, Guoqiang
%A Wu, Fei
%A Okubo, Shigenori
%T Model following control system with time delays
%J Kybernetika
%D 2016
%P 478-495
%V 52
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0478/
%R 10.14736/kyb-2016-3-0478
%G en
%F 10_14736_kyb_2016_3_0478
Wang, Dazhong; Wu, Shujing; Zhang, Wei; Wang, Guoqiang; Wu, Fei; Okubo, Shigenori. Model following control system with time delays. Kybernetika, Tome 52 (2016) no. 3, pp. 478-495. doi: 10.14736/kyb-2016-3-0478

[1] Akiyama, T., Hattor, H., Okubo, S.: Design of the model following control system with time delays. IEEJ Trans. Electronics, Inform. Systems 118 (1998), 4, 497-502 (in Japaness). | DOI

[2] Boulkroune, A., M'Saad, M., Chekireb, H.: Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction. Inform. Sci. 180 (2010), 24, 5041-5059. | DOI | MR | Zbl

[3] Califano, C., Marquez-Martinez, L. A., Moog, C. H.: Extended lie brackets for nonlinear time-delay systems. IEEE Trans. Automat. Control 56 (2011), 9, 2213-2218. | DOI | MR

[4] Cui, B. T., Lou, X. Y.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos, Solitons, Fractals 39 (2009), 1, 288-294. | DOI | Zbl

[5] Imer, O., Basar, T.: Control of congestion in high-speed networks. European J. Control 7 (2001), 132-144. | DOI

[6] Lan, Y., Zhou, Y.: High-order ($\mathcal{D}^{\alpha}$)-type iterative learning control for fractional-order nonlinear time-delay systems. J. Optim. Theory Appl. 156 (2013), 153-166. | DOI | MR | Zbl

[7] Liu, P., Chiang, T. S.: $H_\infty$ output tracking fuzzy control for nonlinear systems with time-varying delay. Applied Soft Computing 12 (2012), 9, 2963-2972. | DOI

[8] Maiti, A., Pal, A., Samanta, G.: Effect of time-delay on a food chain model. Applied Math. Comput. 200 (2008), 189-203. | DOI | MR | Zbl

[9] Ni, M., Li, G.: A direct approach to the design of robust tracking controllers for uncertain delay systems. Asian J. Control 8 (2006), 412-416. | DOI | MR

[10] Okubo, S.: Nonlinear model following control system using stable zero assignment. Trans. Soc. Instrument and Control Engrs. 28 (1992), 8, 939-946 (in Japaness). | DOI

[11] Pai, M.: Robust tracking and model following of uncertain dynamics systems via discrete-time integral sliding mode control. Int. J. Control Automat. Syst. 7 (2009), 3, 381-387. | DOI

[12] Pai, M.: Design of adaptive sliding mode controller for robust tracking and model following. J. Frankl. Inst. 347 (2010), 1837-1849. | DOI | MR | Zbl

[13] Quan, Q., Yang, D., Cai, K.: Adaptive compensation for robust tracking of uncertain dynamic delay systems. Acta Automat. Sin. 36 (2010), 8, 1189-1194. | DOI | MR

[14] Saglam, C. O., Baran, E. A., Nergiz, A. O., Sabanovic, A.: Model following control with discrete time SMC for time-delayed bilateral control systems. In: Proc. 2011 IEEE International Conference on Mechatronics, Istanbul 2011. | DOI

[15] Srinathkumar, S.: Model following control systems. Eigenstructure Control Algorithms: Applications to aircraft/rotorcraft handling qualities design. IET Digital Library, 2011.

[16] Su, H., Chen, G., Wang, X., Lin, Z.: Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica 47 (2011), 2, 368-375. | DOI | MR | Zbl

[17] Tadeuse, K.: Application of the drazin inverse to the analysis of descriptor fractional discrete-time linear systems with regular pencil. Int. J. Appl. Math. Comput. Sci. 23 (2013), 1, 29-33. | DOI | MR

[18] Tsai, C. H., Wang, C. H., Lin, W. S.: Robust fuzzy model-following control of robot manipulators. IEEE Trans. Fuzzy Systems 8 (2000), 462-469. | DOI

[19] Wang, Y. S., Ma, Q. H., Zhu, Q., Liu, X. T., Zhao, L. H.: An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine. Applied Acoustics 75 (2014), 1-9. | DOI

[20] Wang, D., Okubo, S.: A design of model following control system for linear neutral system with time-delay. IEEJ Trans. ELS. 128 (2008), 11, 1657-1663 (in Japaness). | DOI

[21] Wang, D., Wu, S., Okubo, S.: Design of the state predictive model following control system with time-delay. Int. J. Appl. Math. Comput. Sci. 19 (2009), 2, 247-254. | DOI | Zbl

[22] Wang, Y. S., Shen, G. Q., Xing, Y. F.: A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network. Mechanical Systems and Signal Processing 45 (2014), 1, 255-266. | DOI

[23] Wu, H.: Adaptive robust tracking and model following of uncertain dynamical systems with multiple time-delays. IEEE Trans. Automat. Control 49 (2004), 611-616. | DOI | MR

[24] Wu, S., Okubo, S., Wang, D.: Design of a model following control system for nonlinear descriptor system in discrete time. Kybernetika 44 (2008), 4, 546-556. | MR | Zbl

[25] Xing, Y. F., Wang, Y. S., Shi, L., Guo, H., Chen, H.: Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods. Mechanical Systems and Signal Processing 66-67 (2016), 875-892. | DOI

[26] Yang, R., Wang, Y.: Finite-time stability analysis and control for a class of nonlinear time-delay Hamiltonian systems. Automatica 49 (2013), 2, 390-401. | DOI | MR

[27] Ying, J., Yuan, Y.: Pattern formation in a symmetrical network with delay. Nonlinear Analysis: Real World Appl. 14 (2013), 1102-1113. | DOI | MR

[28] Zhang, T., Ge, S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain. Automatica 43 (2007), 6, 1021-1033. | DOI | MR | Zbl

Cité par Sources :