Quantized distributed output regulation of multi-agent systems
Kybernetika, Tome 52 (2016) no. 3, pp. 427-440 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Motivated by digital communication channel, we consider the distributed output regulation problem for linear multi-agent systems with quantized state measurements. Quantizers take finitely many values and have an adjustable "zoom" parameter. Quantized distributed output regulation concerns designing distributed feedback by employing quantized technique for multi-agent systems such that all agents can track an active leader, and/or distributed disturbance rejection. With the solvability conditions satisfied, both hybrid static and dynamic feedback with quantized strategy are developed.
Motivated by digital communication channel, we consider the distributed output regulation problem for linear multi-agent systems with quantized state measurements. Quantizers take finitely many values and have an adjustable "zoom" parameter. Quantized distributed output regulation concerns designing distributed feedback by employing quantized technique for multi-agent systems such that all agents can track an active leader, and/or distributed disturbance rejection. With the solvability conditions satisfied, both hybrid static and dynamic feedback with quantized strategy are developed.
DOI : 10.14736/kyb-2016-3-0427
Classification : 35R35, 49J40, 60G40
Keywords: multi-agent systems; distributed output regulation; active leader; quantized control
@article{10_14736_kyb_2016_3_0427,
     author = {Wang, Xiaoli and Chen, Yumin},
     title = {Quantized distributed output regulation of multi-agent systems},
     journal = {Kybernetika},
     pages = {427--440},
     year = {2016},
     volume = {52},
     number = {3},
     doi = {10.14736/kyb-2016-3-0427},
     mrnumber = {3532515},
     zbl = {06644303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0427/}
}
TY  - JOUR
AU  - Wang, Xiaoli
AU  - Chen, Yumin
TI  - Quantized distributed output regulation of multi-agent systems
JO  - Kybernetika
PY  - 2016
SP  - 427
EP  - 440
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0427/
DO  - 10.14736/kyb-2016-3-0427
LA  - en
ID  - 10_14736_kyb_2016_3_0427
ER  - 
%0 Journal Article
%A Wang, Xiaoli
%A Chen, Yumin
%T Quantized distributed output regulation of multi-agent systems
%J Kybernetika
%D 2016
%P 427-440
%V 52
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0427/
%R 10.14736/kyb-2016-3-0427
%G en
%F 10_14736_kyb_2016_3_0427
Wang, Xiaoli; Chen, Yumin. Quantized distributed output regulation of multi-agent systems. Kybernetika, Tome 52 (2016) no. 3, pp. 427-440. doi: 10.14736/kyb-2016-3-0427

[1] Brockett, R. W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Automat. Control 45 (2000), 1279-1289. | DOI | MR | Zbl

[2] Buhl, J., Stumpter, D., Couzin, I., Hale, J., Despland, E., Miller, E., Simpson, S.: From disorder to order in marching locusts. Science 312 (2006), 1402-1406. | DOI

[3] Carli, R., Bullo, F.: Quantized coordination algorithms for rendezvous and deployment. SIAM J. Control Optim. 48 (2009), 1251-1274. | DOI | MR | Zbl

[4] Fax, J. A., Murray, R. M.: Information flow and cooperative control of vehicle formation. IEEE Trans. Autom. Control 49 (2004), 1465-1476. | DOI | MR

[5] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | DOI | MR | Zbl

[6] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. | DOI | MR | Zbl

[7] Hong, Y., Wang, X., Jiang, Z.: Distributed output regulation of leader-follower multi-agent systems. Int. J. Robust Nonlinear Control 23 (2013), 48-66. | DOI | MR | Zbl

[8] Hu, J., Feng, G.: Quantized tracking control for a multi-agent system with high-order leader dynamics. Asian J. Control 13 (2011), 988-997. | DOI | MR | Zbl

[9] Huang, J.: Nonlinear Output Regulation: Theory & Applications. SIAM, Phildelphia 2004. | DOI | MR | Zbl

[10] Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica. 39 (2003), 1543-1554. | DOI | MR | Zbl

[11] Lu, M., Huang, J.: Cooperative output regulation problem for linear time-delay multi-agent systems under switching network. In: 33rd Chinese Control Conference (CCC) 2014, pp. 3515-3520. | DOI

[12] Kameneva, T., Nesic, D.: Further results on robustness of linear control systems with quantized feedback. In: Proc. American Control Conference. New York 2007, pp. 1015-1020. | DOI

[13] Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43 (2007), 1192-1203. | DOI | MR | Zbl

[14] Tang, Y., Hong, Y., Wang, X.: Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders. Automatica 62 (2015), 154-160. | DOI | MR | Zbl

[15] Wang, X., Han, F.: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772. | MR | Zbl

[16] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895. | DOI | MR

[17] Wang, X., Ni, W., Wang, X.: Leader-following formation of switching multirobot systems via internal model. IEEE Trans. Syst. Man. Cyber. Part B: Cyber. 42 (2012), 817-826. | DOI

[18] Yang, Z., Hong, Y.: Stabilization of impulsive hybrid systems using quantized input and output feedback. Asian J. Control 14 (2012), 679-692. | DOI | MR | Zbl

Cité par Sources :