Keywords: dynamic programming method; optimal stochastic control
@article{10_14736_kyb_2016_3_0403,
author = {Garc{\'\i}a, Yofre H. and Gonz\'alez-Hern\'andez, Juan},
title = {Discrete-time {Markov} control processes with recursive discount rates},
journal = {Kybernetika},
pages = {403--426},
year = {2016},
volume = {52},
number = {3},
doi = {10.14736/kyb-2016-3-0403},
mrnumber = {3532514},
zbl = {1357.49110},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0403/}
}
TY - JOUR AU - García, Yofre H. AU - González-Hernández, Juan TI - Discrete-time Markov control processes with recursive discount rates JO - Kybernetika PY - 2016 SP - 403 EP - 426 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0403/ DO - 10.14736/kyb-2016-3-0403 LA - en ID - 10_14736_kyb_2016_3_0403 ER -
%0 Journal Article %A García, Yofre H. %A González-Hernández, Juan %T Discrete-time Markov control processes with recursive discount rates %J Kybernetika %D 2016 %P 403-426 %V 52 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0403/ %R 10.14736/kyb-2016-3-0403 %G en %F 10_14736_kyb_2016_3_0403
García, Yofre H.; González-Hernández, Juan. Discrete-time Markov control processes with recursive discount rates. Kybernetika, Tome 52 (2016) no. 3, pp. 403-426. doi: 10.14736/kyb-2016-3-0403
[1] Arnold, L.: Stochastic Differential Equations: Theory and Applications. John Wiley and Sons, New York 1973. | DOI | MR | Zbl
[2] Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Academic Press, San Diego 2000. | MR | Zbl
[3] Bellman, R.: Dynamic Programming. Princeton Univ. Press, New Jersey 1957. | MR | Zbl
[4] Bertsekas, D., Shreve, S.: Stochastic Optimal Control: The Discrete Time Case. Athena Scientific, Massachusetts 1996. | MR | Zbl
[5] Brigo, D., Mercurio, F.: Interest Rate Models Theory and Practice. Springer-Verlag, New York 2001. | DOI | MR | Zbl
[6] Black, F., Karasinski, P.: Bond and option pricing when short rates are lognormal. Financ. Anal. J. 47 (1991), 4, 52-59. | DOI
[7] Carmon, Y., Shwartz, A.: Markov decision processes with exponentially representable discounting. Oper. Res. Lett. 37 (2009), 51-55. | DOI | MR | Zbl
[8] Vecchia, E. Della, Marco, S. Di, Vidal, F.: Dynamic programming for variable discounted Markov decision problems. In: Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO) - XII Simposio Argentino de Investigación Operativa (SIO), Buenos Aires, 2014, pp. 50-62.
[9] Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53 (1985), 385-407. | DOI | MR | Zbl
[10] Dothan, U.: On the term structure interest rates. J. Financ. Econ. 6 (1978), 59-69. | DOI
[11] Feinberg, E., Shwartz, A.: Markov decision models with weighted discounted criteria. J. Finan. Econ. 19 (1994), 152-168. | DOI | MR | Zbl
[12] González-Hernández, J., López-Martínez, R., Pérez-Hernández, J.: Markov control processes with randomized discounted cost. Math. Method Oper. Res. 65 (2006), 1, 27-44. | DOI | MR | Zbl
[13] González-Hernández, J., López-Martínez, R., Minjarez-Sosa, A.: Adaptive policies for stochastic systems under a randomized discounted cost criterion. Bol. Soc. Mat. Mex. 14 (2008), 3, 149-163. | MR | Zbl
[14] González-Hernández, J., López-Martínez, R., Minjarez-Sosa, A.: Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2008), 5, 737-754. | MR | Zbl
[15] Guo, X., Hernández-Del-Valle, A., Hernández-Lerma, O.: First passage problems for a non-stationary discrette-time stochastic control systems. Eur. J. Control 15 (2012), 7, 528-538. | DOI | MR
[16] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes. Basic Optimality Criteria. Springer-Verlag, New York 1996. | DOI | MR | Zbl
[17] Minjarez-Sosa, J.: Markov control models with unknown random sate-action-dependent discount factors. TOP 23 (2015), 3, 743-772. | DOI | MR
[18] Hinderer, K.: Foundations of non-stationary dynamical programming with discrete time parameter. In: Lecture Notes Operations Research (M. Bechmann and H. Künzi, eds.), Springer-Verlag 33, Zürich 1970. | DOI | MR
[19] Ho, T., Lee, S.: Term structure movements and pricing interest rate claims. J. Financ. 41 (1986), 1011-1029. | DOI
[20] Hull, J.: Options, Futures and other Derivatives. Sixth edition. Prentice Hall, New Jersey 2006.
[21] Hull, J., White, A.: Pricing interest rate derivative securities. Rev. Financ. Stud. 3 (1990), 573-592. | DOI
[22] Mercurio, F., Moraleda, J.: A family of humped volatility models. Eur. J. Finance 7 (2001), 93-116. | DOI
[23] Rendleman, R., Bartter, B.: The pricing of options on debt securities. J. Financ. Quant. Anal. 15 (1980), 11-24. | DOI
[24] Rieder, U.: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131. | DOI | MR | Zbl
[25] Schäl, M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z. Wahrscheinlichkeit 32 (1975), 179-196. | DOI | MR | Zbl
[26] Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5 (1977), 177-188. | DOI
[27] Wei, Q., X, X. Guo: Markov decision processes with state-dependent discount factors and unbounded rewards costs. Oper. Res. Lett. 39 (2011), 369-374. | DOI | MR | Zbl
[28] Ye, L., Guo, X.: Continuous-time Markov decision processes with state-dependent discount factors. Acta Appl. Math. 121 (2012), 1, 5-27. | DOI | MR | Zbl
[29] Zhang, Y.: Convex analytic approach to constrained discounted Markov decision processes with non-constant discount factors. TOP 21 (2013), 2, 378-408. | DOI | MR | Zbl
Cité par Sources :