Keywords: OWA operator; ordered weighted averaging operator; gradual number; gradual interval; fuzzy interval; linear order; total order; multi-expert decision making; type-2 fuzzy set
@article{10_14736_kyb_2016_3_0379,
author = {Tak\'a\v{c}, Zdenko},
title = {OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making},
journal = {Kybernetika},
pages = {379--402},
year = {2016},
volume = {52},
number = {3},
doi = {10.14736/kyb-2016-3-0379},
mrnumber = {3532513},
zbl = {06644301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0379/}
}
TY - JOUR AU - Takáč, Zdenko TI - OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making JO - Kybernetika PY - 2016 SP - 379 EP - 402 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0379/ DO - 10.14736/kyb-2016-3-0379 LA - en ID - 10_14736_kyb_2016_3_0379 ER -
%0 Journal Article %A Takáč, Zdenko %T OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making %J Kybernetika %D 2016 %P 379-402 %V 52 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0379/ %R 10.14736/kyb-2016-3-0379 %G en %F 10_14736_kyb_2016_3_0379
Takáč, Zdenko. OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making. Kybernetika, Tome 52 (2016) no. 3, pp. 379-402. doi: 10.14736/kyb-2016-3-0379
[1] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A guide for practitioners. Studies in Fuzziness and Soft Computing 221 (2007), 261-269. | DOI
[2] Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G.: Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices. Inform. Fusion 17 (2014), 56-64. | DOI
[3] Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets and Systems 220 (2013), 69-77. | DOI | MR | Zbl
[4] Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE Trans. Fuzzy Systems 21 (2013), 1150-1162. | DOI
[5] Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control. Inform. Sciences 279 (2014), 615-631. | DOI | MR
[6] Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets and Systems 97 (1998), 33-48. | DOI | MR | Zbl
[7] Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), The Handbooks of Fuzzy Sets Series, Vol. 7, Springer US 2000, pp. 483-581. | DOI | MR | Zbl
[8] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inform. Sciences 36 (1985), 85-121. | DOI | MR | Zbl
[9] Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing 12 (2008), 165-175. | DOI | Zbl
[10] Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis. IEEE Trans. Fuzzy Systems 16 (2008), 388-402. | DOI
[11] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. | DOI | MR | Zbl
[12] Herrera, F., Martínez, L.: A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making. IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 31 (2001), 227-234. | DOI
[13] Karnik, N. N., Mendel, J. M.: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122 (2001), 327-348. | DOI | MR | Zbl
[14] Kosiński, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Trans. Fuzzy Systems 21 (2013), 1163-1169. | DOI
[15] Lizasoain, I., Moreno, C.: OWA operators defined on complete lattices. Fuzzy Sets and Systems 224 (2013), 36-52. | DOI | MR | Zbl
[16] Lodwick, W. A., Untiedt, E. A.: A comparison of interval analysis using constraint interval arithmetic and fuzzy interval analysis using gradual numbers. In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1-6. | DOI
[17] Martin, T. P., Azvine, B.: The X-mu approach: Fuzzy quantities, fuzzy arithmetic and fuzzy association rules. In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), 2013, pp. 24-29. | DOI
[18] Melin, P., Castillo, O.: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Applied Soft Computing J. 21 (2014), 568-577. | DOI
[19] Mesiar, R., Kolesárová, A., Calvo, T., Komorníková, M.: A review of aggregation functions. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models (H. Bustince et al., eds.), Springer, Berlin 2008, pp. 121-144. | DOI | Zbl
[20] Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Information and Control 31 (1976), 312-340. | DOI | MR | Zbl
[21] Moore, E. R.: Methods and Applications of Interval Analysis. SIAM 1979. | DOI | MR | Zbl
[22] Moore, E. R., Lodwick, W. A.: Interval analysis and fuzzy set theory. Fuzzy Sets and Systems 135 (2003), 5-9. | DOI | MR | Zbl
[23] Ochoa, G., Lizasoain, I., Paternain, D., Bustince, H., Pal, N. R.: Some properties of lattice OWA operators and their importance in image processing. In: Proc. IFSA-EUSFLAT 2015, pp. 1261-1265. | DOI
[24] Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets and Systems 90 (1997), 199-206. | DOI | MR | Zbl
[25] Sánchez, D., Delgado, M., Vila, M. A., Chamorro-Martínez, J.: On a non-nested level-based representation of fuzziness. Fuzzy Sets and Systems 192 (2012), 159-175. | DOI | MR | Zbl
[26] Takáč, Z.: Aggregation of fuzzy truth values. Inform. Sciences 271 (2014), 1-13. | DOI | MR
[27] Takáč, Z.: A linear order and OWA operator for discrete gradual real numbers. In: Proc. IFSA-EUSFLAT 2015, pp. 260-266. | DOI
[28] Walker, C. L., Walker, E. A.: The algebra of fuzzy truth values. Fuzzy Sets and Systems 149 (2005), 309-347. | DOI | MR | Zbl
[29] Xu, Z. S., Da, Q. L.: The uncertain OWA operator. Int. J. Intelligent Systems 17 (2002), 569-575. | DOI | Zbl
[30] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems Man and Cybernetics 18 (1988), 183-190. | DOI | MR | Zbl
[31] Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers. Fuzzy Sets and Systems 159 (2008), 3281-3296. | DOI | MR | Zbl
[32] Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M.: Alpha-level aggregation: A practical approach to type-1 OWA operation for aggregating uncertain information with applications to breast cancer treatments. IEEE Tran. Knowledge Data Engrg. 23 (2011), 1455-1468. | DOI
Cité par Sources :