Keywords: efficient solution; second order $\eta $-approximation; saddle point criteria; optimality condition
@article{10_14736_kyb_2016_3_0359,
author = {Jayswal, Anurag and Jha, Shalini and Choudhury, Sarita},
title = {Saddle point criteria for second order $\eta $-approximated vector optimization problems},
journal = {Kybernetika},
pages = {359--378},
year = {2016},
volume = {52},
number = {3},
doi = {10.14736/kyb-2016-3-0359},
mrnumber = {3532512},
zbl = {06644300},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0359/}
}
TY - JOUR AU - Jayswal, Anurag AU - Jha, Shalini AU - Choudhury, Sarita TI - Saddle point criteria for second order $\eta $-approximated vector optimization problems JO - Kybernetika PY - 2016 SP - 359 EP - 378 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0359/ DO - 10.14736/kyb-2016-3-0359 LA - en ID - 10_14736_kyb_2016_3_0359 ER -
%0 Journal Article %A Jayswal, Anurag %A Jha, Shalini %A Choudhury, Sarita %T Saddle point criteria for second order $\eta $-approximated vector optimization problems %J Kybernetika %D 2016 %P 359-378 %V 52 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0359/ %R 10.14736/kyb-2016-3-0359 %G en %F 10_14736_kyb_2016_3_0359
Jayswal, Anurag; Jha, Shalini; Choudhury, Sarita. Saddle point criteria for second order $\eta $-approximated vector optimization problems. Kybernetika, Tome 52 (2016) no. 3, pp. 359-378. doi: 10.14736/kyb-2016-3-0359
[1] Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102 (1999), 37-50. | DOI | MR | Zbl
[2] Antczak, T.: An $\eta$-approximation method in nonlinear vector optimization. Nonlinear Anal. 63 (2005), 225-236. | DOI | MR | Zbl
[3] Antczak, T.: Saddle point criteria and duality in multiobjective programming via an $\eta$-approximation method. Anziam J. 47 (2005), 155-172. | DOI | MR | Zbl
[4] Antczak, T.: Saddle point criteria via a second order $\eta$-approximation approach for nonlinear mathematical programming problem involving second order invex functions. Kybernetika 47 (2011), 222-240. | MR
[5] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991. | MR | Zbl
[6] Bector, C. R., Bector, B. K.: Generalized-bonvex functions and second order duality for a nonlinear programming problem. Congr. Numer. 52 (1985), 37-52. | DOI
[7] Egudo, R. R., Hanson, M. A.: Multiobjective duality with invexity. J. Math. Anal. Appl. 126 (1987), 469-477. | DOI | MR | Zbl
[8] Ghosh, M. K., Shaiju, A. J.: Existence of value and saddle point in infinite-dimensional differential games. J. Optim. Theory Appl. 121 (2004), 301-325. | DOI | MR | Zbl
[9] Hanson, M. A.: On the sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. | DOI | MR
[10] Horst, R., Pardalos, P. M., Thoai, N. V.: Introduction to Global Optimization. Second edition. Kluwer Academic Publishers, 2000. | MR
[11] Li, Z. F., Wang, S. Y.: Lagrange multipliers and saddle points in multiobjective programming. J. Optim. Theory Appl. 83 (1994), 63- 81. | DOI | MR | Zbl
[12] Li, T., Wang, Y. J., Liang, Z., Pardalos, P. M.: Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Glob. Optim. 38 (2007), 405-419. | DOI | MR | Zbl
[13] Luc, D. T.: Theory of Vector Optimization. Springer-Verlag, Lecture Notes in Economics and Mathematical systems 319, Berlin, New York 1989. | DOI | MR | Zbl
Cité par Sources :