Keywords: nonparametric estimation; stationary processes
@article{10_14736_kyb_2016_3_0348,
author = {Morvai, Guszt\'av and Weiss, Benjamin},
title = {A versatile scheme for predicting renewal times},
journal = {Kybernetika},
pages = {348--358},
year = {2016},
volume = {52},
number = {3},
doi = {10.14736/kyb-2016-3-0348},
mrnumber = {3532511},
zbl = {06644299},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0348/}
}
TY - JOUR AU - Morvai, Gusztáv AU - Weiss, Benjamin TI - A versatile scheme for predicting renewal times JO - Kybernetika PY - 2016 SP - 348 EP - 358 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0348/ DO - 10.14736/kyb-2016-3-0348 LA - en ID - 10_14736_kyb_2016_3_0348 ER -
Morvai, Gusztáv; Weiss, Benjamin. A versatile scheme for predicting renewal times. Kybernetika, Tome 52 (2016) no. 3, pp. 348-358. doi: 10.14736/kyb-2016-3-0348
[1] Bahr, B. von, Esseen, C. G.: Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1\leq r \leq 2$. Annals Math. Statist. 36 (1965), 299-303. | DOI | MR
[2] Csiszár, I., Shields, P.: The consistency of the BIC Markov order estimator. Annals Statist. 28 (2000), 1601-1619. | DOI | MR | Zbl
[3] Csiszár, I.: Large-scale typicality of Markov sample paths and consistency of MDL order estimators. IEEE Trans. Inform. Theory 48 (2002), 1616-1628. | DOI | MR | Zbl
[4] Feller, W.: An Introduction to Probability Theory and its Applications Vol. I. Third edition. John Wiley and Sons, New York - London - Sydney 1968. | MR
[5] Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Third edition. Pearson Prentice Hall, Upper Saddle River NJ 2005.
[6] Morvai, G., Weiss, B.: Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005), 1496-1497. | DOI | MR
[7] Morvai, G., Weiss, B.: Estimating the lengths of memory words. IEEE Trans. Inform. Theory 54 (2008), 8, 3804-3807. | DOI | MR | Zbl
[8] Morvai, G., Weiss, B.: On universal estimates for binary renewal processes. Ann. Appl. Probab. 18 (2008), 5, 1970-1992. | DOI | MR | Zbl
[9] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series. In: Proceedings of ITW2009, Volos 2009, pp. 67-70. | DOI
[10] Morvai, G., Weiss, B.: Universal tests for memory words. IEEE Trans. Inform. Theory 59 (2013), 6873-6879. | DOI | MR
[11] Morvai, G., Weiss, B.: Inferring the residual waiting time for binary stationary time series. Kybernetika 50 (2014), 869-882. | DOI | MR | Zbl
[12] Ryabko, B. Ya.: Prediction of random sequences and universal coding. Probl. Inform. Transmiss. 24 (1988), 87-96. | MR | Zbl
[13] Shields, P. C.: The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics, American Mathematical Society, Providence 13 1996. | DOI | MR | Zbl
Cité par Sources :