A versatile scheme for predicting renewal times
Kybernetika, Tome 52 (2016) no. 3, pp. 348-358 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

There are two kinds of universal schemes for estimating residual waiting times, those where the error tends to zero almost surely and those where the error tends to zero in some integral norm. Usually these schemes are different because different methods are used to prove their consistency. In this note we will give a single scheme where the average error is eventually small for all time instants, while the error itself tends to zero along a sequence of stopping times of density one.
There are two kinds of universal schemes for estimating residual waiting times, those where the error tends to zero almost surely and those where the error tends to zero in some integral norm. Usually these schemes are different because different methods are used to prove their consistency. In this note we will give a single scheme where the average error is eventually small for all time instants, while the error itself tends to zero along a sequence of stopping times of density one.
DOI : 10.14736/kyb-2016-3-0348
Classification : 60G10, 60G25, 62G05
Keywords: nonparametric estimation; stationary processes
@article{10_14736_kyb_2016_3_0348,
     author = {Morvai, Guszt\'av and Weiss, Benjamin},
     title = {A versatile scheme for predicting renewal times},
     journal = {Kybernetika},
     pages = {348--358},
     year = {2016},
     volume = {52},
     number = {3},
     doi = {10.14736/kyb-2016-3-0348},
     mrnumber = {3532511},
     zbl = {06644299},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0348/}
}
TY  - JOUR
AU  - Morvai, Gusztáv
AU  - Weiss, Benjamin
TI  - A versatile scheme for predicting renewal times
JO  - Kybernetika
PY  - 2016
SP  - 348
EP  - 358
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0348/
DO  - 10.14736/kyb-2016-3-0348
LA  - en
ID  - 10_14736_kyb_2016_3_0348
ER  - 
%0 Journal Article
%A Morvai, Gusztáv
%A Weiss, Benjamin
%T A versatile scheme for predicting renewal times
%J Kybernetika
%D 2016
%P 348-358
%V 52
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0348/
%R 10.14736/kyb-2016-3-0348
%G en
%F 10_14736_kyb_2016_3_0348
Morvai, Gusztáv; Weiss, Benjamin. A versatile scheme for predicting renewal times. Kybernetika, Tome 52 (2016) no. 3, pp. 348-358. doi: 10.14736/kyb-2016-3-0348

[1] Bahr, B. von, Esseen, C. G.: Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1\leq r \leq 2$. Annals Math. Statist. 36 (1965), 299-303. | DOI | MR

[2] Csiszár, I., Shields, P.: The consistency of the BIC Markov order estimator. Annals Statist. 28 (2000), 1601-1619. | DOI | MR | Zbl

[3] Csiszár, I.: Large-scale typicality of Markov sample paths and consistency of MDL order estimators. IEEE Trans. Inform. Theory 48 (2002), 1616-1628. | DOI | MR | Zbl

[4] Feller, W.: An Introduction to Probability Theory and its Applications Vol. I. Third edition. John Wiley and Sons, New York - London - Sydney 1968. | MR

[5] Ghahramani, S.: Fundamentals of Probability with Stochastic Processes. Third edition. Pearson Prentice Hall, Upper Saddle River NJ 2005.

[6] Morvai, G., Weiss, B.: Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005), 1496-1497. | DOI | MR

[7] Morvai, G., Weiss, B.: Estimating the lengths of memory words. IEEE Trans. Inform. Theory 54 (2008), 8, 3804-3807. | DOI | MR | Zbl

[8] Morvai, G., Weiss, B.: On universal estimates for binary renewal processes. Ann. Appl. Probab. 18 (2008), 5, 1970-1992. | DOI | MR | Zbl

[9] Morvai, G., Weiss, B.: Estimating the residual waiting time for binary stationary time series. In: Proceedings of ITW2009, Volos 2009, pp. 67-70. | DOI

[10] Morvai, G., Weiss, B.: Universal tests for memory words. IEEE Trans. Inform. Theory 59 (2013), 6873-6879. | DOI | MR

[11] Morvai, G., Weiss, B.: Inferring the residual waiting time for binary stationary time series. Kybernetika 50 (2014), 869-882. | DOI | MR | Zbl

[12] Ryabko, B. Ya.: Prediction of random sequences and universal coding. Probl. Inform. Transmiss. 24 (1988), 87-96. | MR | Zbl

[13] Shields, P. C.: The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics, American Mathematical Society, Providence 13 1996. | DOI | MR | Zbl

Cité par Sources :