On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application
Kybernetika, Tome 52 (2016) no. 3, pp. 329-347
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of $\mu$-subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].
In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of $\mu$-subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].
DOI :
10.14736/kyb-2016-3-0329
Classification :
26E50, 28E10
Keywords: seminormed fuzzy integral; semicopula; monotone measure; Minkowski's inequality; Hölder's inequality; convergence in mean
Keywords: seminormed fuzzy integral; semicopula; monotone measure; Minkowski's inequality; Hölder's inequality; convergence in mean
@article{10_14736_kyb_2016_3_0329,
author = {Boczek, Micha{\l} and Kaluszka, Marek},
title = {On the {Minkowski-H\"older} type inequalities for generalized {Sugeno} integrals with an application},
journal = {Kybernetika},
pages = {329--347},
year = {2016},
volume = {52},
number = {3},
doi = {10.14736/kyb-2016-3-0329},
mrnumber = {3532510},
zbl = {06644298},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0329/}
}
TY - JOUR AU - Boczek, Michał AU - Kaluszka, Marek TI - On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application JO - Kybernetika PY - 2016 SP - 329 EP - 347 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0329/ DO - 10.14736/kyb-2016-3-0329 LA - en ID - 10_14736_kyb_2016_3_0329 ER -
%0 Journal Article %A Boczek, Michał %A Kaluszka, Marek %T On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application %J Kybernetika %D 2016 %P 329-347 %V 52 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-3-0329/ %R 10.14736/kyb-2016-3-0329 %G en %F 10_14736_kyb_2016_3_0329
Boczek, Michał; Kaluszka, Marek. On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application. Kybernetika, Tome 52 (2016) no. 3, pp. 329-347. doi: 10.14736/kyb-2016-3-0329
Cité par Sources :