Keywords: fuzzy random variable; quadratic form; linearly negative quadrant dependence; law of large numbers; almost surely convergence
@article{10_14736_kyb_2016_2_0307,
author = {Ahmadzade, Hamed and Amini, Mohammad and Taheri, Seyed Mahmoud and Bozorgnia, Abolghasem},
title = {Maximal inequalities and some convergence theorems for fuzzy random variables},
journal = {Kybernetika},
pages = {307--328},
year = {2016},
volume = {52},
number = {2},
doi = {10.14736/kyb-2016-2-0307},
mrnumber = {3501164},
zbl = {1374.60014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0307/}
}
TY - JOUR AU - Ahmadzade, Hamed AU - Amini, Mohammad AU - Taheri, Seyed Mahmoud AU - Bozorgnia, Abolghasem TI - Maximal inequalities and some convergence theorems for fuzzy random variables JO - Kybernetika PY - 2016 SP - 307 EP - 328 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0307/ DO - 10.14736/kyb-2016-2-0307 LA - en ID - 10_14736_kyb_2016_2_0307 ER -
%0 Journal Article %A Ahmadzade, Hamed %A Amini, Mohammad %A Taheri, Seyed Mahmoud %A Bozorgnia, Abolghasem %T Maximal inequalities and some convergence theorems for fuzzy random variables %J Kybernetika %D 2016 %P 307-328 %V 52 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0307/ %R 10.14736/kyb-2016-2-0307 %G en %F 10_14736_kyb_2016_2_0307
Ahmadzade, Hamed; Amini, Mohammad; Taheri, Seyed Mahmoud; Bozorgnia, Abolghasem. Maximal inequalities and some convergence theorems for fuzzy random variables. Kybernetika, Tome 52 (2016) no. 2, pp. 307-328. doi: 10.14736/kyb-2016-2-0307
[1] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some limit theorems for independent fuzzy random variables. Thaiwan J. Math. 12 (2014), 537-548. | MR | Zbl
[2] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some moment inequalities for fuzzy martingales and their applications. J. Uncertainty Anal. Appl. 2 (2014), 1-14. | DOI
[3] Aumann, R. J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12 (1965), 1-12. | DOI | MR | Zbl
[4] Cuzich, J., Gine, E., Zinn, J.: Laws of large numbers for quadratic forms, maxima of products and truncated sums of i.i.d. random variables. Ann. Probab. 23 (1995), 292-333. | DOI | MR
[5] Eghbal, N., Amini, M., Bozorgnia, A.: Some maximal inequalities for quadratic forms of negative superadditive dependence random variables. Stat. Probab. Lett. 80 (2010), 587-591. | DOI | MR | Zbl
[6] Eghbal, N., Amini, M., Bozorgnia, A.: On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables. Stat. Probab. Lett. 81 (2011), 1112-1120. | DOI | MR | Zbl
[7] Fei, W.: Regularity and stopping theorem for fuzzy martingales with continuous parameters. Inform. Sci. 169 (2005), 175-87. | DOI | MR | Zbl
[8] Fei, W., Wu, R., Shao, S.: Doobs stopping theorem for fuzzy (super, sub) martingales with discrete time. Fuzzy Set. Syst. 135 (2003), 377-390. | DOI | MR | Zbl
[9] Feng, Y.: Convergence theorems for fuzzy random variables and fuzzy martingales. Fuzzy Set. Syst. 103 (1999), 435-441. | DOI | MR | Zbl
[10] Feng, Y.: An approach to generalize laws of large numbers for fuzzy random variables. Fuzzy Set. Syst. 128 (2002), 237-245. | DOI | MR | Zbl
[11] Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications. Fuzzy Set. Syst. 120 (2001), 487-497. | MR | Zbl
[12] Fu, Y., Wu, Q.: Almost sure central limit theoremfor LNQD sequences. J. Guilin University of Technology 30 (2010), 4, 637-639. | DOI
[13] Fu, K., Zhang, L.-X.: Strong limit theorems for random sets and fuzzy random sets with slowly varying weights. Inform. Sci. 178 (2008), 2648-2660. | DOI | MR | Zbl
[14] Gadidov, A.: Strong law of large numbers for multilinear forms. Ann. Probab. 26 (1998), 902-923. | DOI | MR | Zbl
[15] Gut, A.: Probability: A Graduate Course. Springer, New York 2005. | DOI | MR | Zbl
[16] Hoeffding, W.: Masstabinvariante Korrelationstheorie. Schriften des Matematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat 1940.
[17] Hong, D.: A convergence of fuzzy random variables. Kybernetika 39 (2003), 275-280. | MR | Zbl
[18] Hong, D., Kim, K.: Weak law of large number for i.i.d. fuzzy random variables. Kybernetika 43 (2007), 87-96. | MR
[19] Joo, S. Y., Kim, Y. K., Kwon, J S.: On Chung's type law of large numbers for fuzzy random variables. Stat. Prob. Lett. 74 (2005), 67-75. | DOI | MR | Zbl
[20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. | DOI | MR | Zbl
[21] Ko, M. H., Choi, Y. K., Choi, Y.-S.: Exponential probability inequality for linearly negative quadrant dependent random variables. Korean Math. Soc. Comm. 22 (2007), 1, 137-143. | DOI | MR | Zbl
[22] Korner, R.: On the variance of fuzzy random variables. Fuzzy Set. Syst. 92 (1997), 83-93. | DOI | MR | Zbl
[23] Kwakernaak, H.: Fuzzy random variables I. | Zbl
[24] Miranda, E., Couso, I., Gil, P.: Random sets as imprecise random variables. J. Math. Anal. Appl. 307 (2005), 32-47. | DOI | MR | Zbl
[25] Miyakoshi, M., Shimbo, M.: A strong law of large numbers for fuzzy random variables. Fuzzy Set. Syst. 12 (1984), 133-142. | DOI | MR | Zbl
[26] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM, Philadelphia 2009. | DOI | MR | Zbl
[27] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. Statist. Probab. 5 (1984), 127-140. | DOI | MR
[28] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 369-380. | DOI | MR | Zbl
[29] Parchami, A., Mashinchi, M., Partovinia, V.: A consistent confidence interval for fuzzy capability index. Appl. Comput. Math. 7 (2008), 119-125. | MR
[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 402-422. | DOI | MR | Zbl
[31] Puri, M. L., Ralescu, D. A.: Convergence theorem for fuzzy martingales. J. Math. Anal. Appl. 160 (1991), 107-122. | DOI | MR | Zbl
[32] Ralescu, D. A.: Fuzzy random variables revisited. In: Math. Fuzzy Sets, Handbook Fuzzy Sets, Series 3 Kluwer, Boston 1999, pp. 701-710. | DOI | MR | Zbl
[33] Sadeghpour-Gildeh, B., Gien, D.: La distance-$D_{p,q}$ et le coeffcient de corrélation entre deux variables aléatoires floues. Actes de LFA'01, Monse-Belgium 2001, pp. 97-102.
[34] Shanchao, Y.: Moment inequalities for sums of products of independent random variables. Stat. Probab. Lett. 76 (2006), 1994-2000. | DOI | MR | Zbl
[35] Stojakovic, M.: Fuzzy martingalesa simple form of fuzzy processes. Stochast. Anal. Appl. 14 (1996), 3, 355-367. | DOI | MR
[36] Taylor, R. L., Seymour, L., Chen, Y.: Weak laws of large numbers for fuzzy random sets. Nonlinear Anal. 47 (2001), 1245-125. | DOI | MR | Zbl
[37] Viertl, R.: Statistical Methods for Fuzzy Data. John Wiley, Chichester 2011. | DOI | MR | Zbl
[38] Wang, J., Wu, Q.: Limiting behavior of the maximum of the partial sum for linearly negative quadrant dependent random variables under residual Ces` aro alpha-integrability assumption. J. Appl. Math. 2012 (2012), 1-10. | DOI | MR
[39] Wang, J. F., Zhang, L. X.: A Berry-Esseen theorem for weakly negatively dependent random variables and its applications. Acta Math. Hungar. 110 (2006), 4, 293-308. | DOI | MR | Zbl
[40] Wu, H. C.: The laws of large numbers for fuzzy random variables. Fuzzy Sets Systems 116 (2000), 245-262. | DOI | MR | Zbl
[41] Zhang, C. H.: Strong law of large numbers for sums of products. Ann. Probab. 24 (1996), 1589-1615. | DOI | MR | Zbl
Cité par Sources :