Estimates of the covariance matrix of vectors of u-statistics and confidence regions for vectors of Kendall's tau
Kybernetika, Tome 52 (2016) no. 2, pp. 280-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consistent estimators of the asymptotic covariance matrix of vectors of $U$-statistics are used in constructing asymptotic confidence regions for vectors of Kendall's correlation coefficients corresponding to various pairs of components of a random vector. The regions are products of intervals computed by means of a critical value from multivariate normal distribution. The regularity of the asymptotic covariance matrix of the vector of Kendall's sample coefficients is proved in the case of sampling from continuous multivariate distribution under mild conditions. The results are applied also to confidence intervals for the coefficient of agreement. The coverage and length of the obtained (multivariate) product of intervals are illustrated by simulation.
Consistent estimators of the asymptotic covariance matrix of vectors of $U$-statistics are used in constructing asymptotic confidence regions for vectors of Kendall's correlation coefficients corresponding to various pairs of components of a random vector. The regions are products of intervals computed by means of a critical value from multivariate normal distribution. The regularity of the asymptotic covariance matrix of the vector of Kendall's sample coefficients is proved in the case of sampling from continuous multivariate distribution under mild conditions. The results are applied also to confidence intervals for the coefficient of agreement. The coverage and length of the obtained (multivariate) product of intervals are illustrated by simulation.
DOI : 10.14736/kyb-2016-2-0280
Classification : 62G05, 62G15
Keywords: consistent estimate of asymptotic covariance matrix; U-statistics; vector of Kendall's coefficients; coefficient of agreement; confidence interval
@article{10_14736_kyb_2016_2_0280,
     author = {Rubl{\'\i}k, Franti\v{s}ek},
     title = {Estimates of the covariance matrix of vectors of u-statistics and confidence regions for vectors of {Kendall's} tau},
     journal = {Kybernetika},
     pages = {280--293},
     year = {2016},
     volume = {52},
     number = {2},
     doi = {10.14736/kyb-2016-2-0280},
     mrnumber = {3501162},
     zbl = {06587899},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0280/}
}
TY  - JOUR
AU  - Rublík, František
TI  - Estimates of the covariance matrix of vectors of u-statistics and confidence regions for vectors of Kendall's tau
JO  - Kybernetika
PY  - 2016
SP  - 280
EP  - 293
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0280/
DO  - 10.14736/kyb-2016-2-0280
LA  - en
ID  - 10_14736_kyb_2016_2_0280
ER  - 
%0 Journal Article
%A Rublík, František
%T Estimates of the covariance matrix of vectors of u-statistics and confidence regions for vectors of Kendall's tau
%J Kybernetika
%D 2016
%P 280-293
%V 52
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0280/
%R 10.14736/kyb-2016-2-0280
%G en
%F 10_14736_kyb_2016_2_0280
Rublík, František. Estimates of the covariance matrix of vectors of u-statistics and confidence regions for vectors of Kendall's tau. Kybernetika, Tome 52 (2016) no. 2, pp. 280-293. doi: 10.14736/kyb-2016-2-0280

[1] Abdous, B., Genest, C., Rémillard, B.: Dependence properties of meta-elliptical distributions. In: Statistical Modelling and Analysis for Complex Data Problems (P. Duchesne and B. Rémillard,eds.), Springer, New York, 2005, pp. 1-15. | DOI | MR

[2] Ehrenberg, A. S. C.: On sampling from a population of rankers. Biometrika 39 (1952), 82-87. | DOI | MR | Zbl

[3] Genest, C., Nešlehová, J., Ghorbal, N. Ben: Estimators based on Kendall's tau in multivariate copula models. Austral. and New Zealand J. Statist. 53 (2011), 157-177. | DOI | MR

[4] Goodman, L. A.: A simple simultaneous test procedure for quasi-independence in contingency tables. J. Royal Statist. Soc., Ser. C 20 2(1971), 165-177. | DOI

[5] Hájek, J., Šidák, Z., Sen, P. K.: Theory of Rank Tests. Academic Press, San Diego 1999. | MR | Zbl

[6] Hoeffding, W.: A class of statistics with asymptotically normal distribution. The Annals Math. Statist. 19 (1948), 293-325. | DOI | MR | Zbl

[7] Hult, H., Lindskog, F.: Multivariate extremes, aggregation and dependence in elliptical distributions. Adv. Appl. Probab. 34 (2002), 587-608. | DOI | MR | Zbl

[8] Kendall, M. G., Smith, B. Babington: On the method of paired comparisons. Biometrika 31 (1940), 324-345. | DOI | MR

[9] Kingman, J. F. C., Taylor, S. J.: Introduction to Measure and Probability. Cambridge University Press, Cambridge 1966. | DOI | MR | Zbl

[10] Lee, A. J.: U-Statistics: Theory and Practice. Marcel Dekker, Inc., New York 1990. | MR | Zbl

[11] Liu, A., Li, Q., Liu, C., Yu, K., Yu, K. F.: A rank-based test for comparison of multidimensional outcomes. JASA 105 (2010), 578-587. | DOI | MR

[12] Maache, H. El, Lepage, Y.: Spearman's rho and Kendalls's tau for multivariate data sets. In: Lecture Notes - Monograph Series 42, Mathematical Statistics and Applications, Festschrift for Constance van Eeden, Beachwood 2003, pp. 113-130. | MR

[13] Rao, C. R.: Linear Statistical Inference and its Applications. John Wiley and Sons, New York 1973. | DOI | MR | Zbl

[14] Sen, P. K.: On some convergence of U-statistics. Cal. Statist. Assoc. Bull. 10 (1960), 1-18. | DOI | MR

Cité par Sources :