Keywords: financial hyperchaotic system; impulse; stabilization; synchronization
@article{10_14736_kyb_2016_2_0241,
author = {Zheng, Song},
title = {Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems},
journal = {Kybernetika},
pages = {241--257},
year = {2016},
volume = {52},
number = {2},
doi = {10.14736/kyb-2016-2-0241},
mrnumber = {3501160},
zbl = {1374.34240},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0241/}
}
TY - JOUR AU - Zheng, Song TI - Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems JO - Kybernetika PY - 2016 SP - 241 EP - 257 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0241/ DO - 10.14736/kyb-2016-2-0241 LA - en ID - 10_14736_kyb_2016_2_0241 ER -
Zheng, Song. Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems. Kybernetika, Tome 52 (2016) no. 2, pp. 241-257. doi: 10.14736/kyb-2016-2-0241
[1] Abd-Elouahab, M., Hamri, N., Wang, J.: Chaos control of a fractional-order financial system. Math. Problems Engrg. 2010 (2010), 1-18. | DOI | Zbl
[2] Agiza, H. N.: Chaos synchronization of Lü dynamical system. Nonlinear Anal. 58 (2004), 11-20. | DOI | MR | Zbl
[3] Cai, G., Yao, L., Hu, P., Fang, X.: Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - Ser. B 18 (2013), 2019-2028. | DOI | MR | Zbl
[4] Cai, G., Zhang, L., Yao., L., Fang, X.: Modified function projective synchronization of financial hyperchaotic systems via adaptive impulsive controller with unknown parameters. Discrete Dynamics in Nature and Society 2015 (2015), 1-11. | DOI
[5] Carroll, T. L., Pecora, L. M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. I 38 (1991), 453-456. | DOI | Zbl
[6] Chen, Y. S., Hwang, R. R., Chang, C. C.: Adaptive impulsive synchronization of uncertain chaotic systems. Phys. Lett. A 374 (2010), 2254-2258. | DOI | Zbl
[7] Deissenberg, C.: Optimal control of linear econometric models with intermittent controls. Econ. Plan. 16 (1980), 49-56. | DOI | Zbl
[8] Ding, J., Yang, W., Yao, H.: A new modified hyperchaotic finance system and its control. Int. J. Nonlinear Sci. 8 (2009), 59-66. | MR | Zbl
[9] Fanti, L., Manfredi, P.: Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos Solitons Fractals 32 (2007), 736-744. | DOI | MR | Zbl
[10] Han, Q. L.: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control. Phys. Lett. A 360 (2007), 563-569. | DOI | Zbl
[11] Itoh, M., Yang, T., Chua, L. O.: Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits. Int. J. Bifurc. Chaos 9 (1999), 1393-1424. | DOI | Zbl
[12] Itoh, M., Yang, T., L., Chua, O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. Bifurc. Chaos 11 (2001), 551-560. | DOI | MR
[13] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore 1989. | DOI | MR | Zbl
[14] Ma, J., Zhang, Q., Gao, Q.: Stability of a three-species symbiosis model with delays. Nonlinear Dynam. 67 (2012), 567-572. | DOI | MR | Zbl
[15] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensioned chaotic systems. Phys. Rev. Lett. 82 (1999), 3042-3045. | DOI
[16] Nik, H. S., He, P., Talebian, S. T.: Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria. Kybernetika 50 (2014), 596-615. | DOI | MR | Zbl
[17] Park, Ju. H.: Chaos synchronization of a chaotic system via nonlinear control. Chaos Solitons Fractals 25 (2005), 579-584. | DOI | Zbl
[18] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR | Zbl
[19] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76 (1996), 1804-1807. | DOI | Zbl
[20] Sasakura, K.: On the dynamic behavior of Schinasi's business cycle model. J. Macroeconom. 16 (1994), 423-444. | DOI
[21] Strotz, R., McAnulty, J., Naines, J.: Goodwin's nonlinear theory of the business cycle: an electro-analog solution. Econometrica 21 (1953), 390-411. | DOI | Zbl
[22] Wang, Z. L.: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters. Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 2366-2372. | DOI
[23] Yang, T.: Impulsive Control Theory. Springer-Verlag, Berlin 2001. | DOI | MR | Zbl
[24] Yang, T.: Impulsive control. IEEE Trans. Automat. Control 44 (1999), 1081-1083. | DOI | MR | Zbl
[25] Yang, T., Chua, L. O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I 44 (1997), 976-988. | DOI | MR
[26] Yang, T., Yang, L. B., Yang, C. M.: Impulsive control of Lorenz system. Physica D 110 (1997), 18-24. | DOI | MR | Zbl
[27] Yang, T., Yang, L. B., Yang, C. M.: Impulsive synchronization of Lorenz systems. Phys. Lett. A 226 (1997), 349-354. | DOI
[28] Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dynam. 67 (2012), 2171-2182. | DOI | MR | Zbl
[29] Ma, M., Zhang, H., Cai, J., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems. Kybernetika 49 (2013), 539-553. | MR | Zbl
[30] Zhao, M., Wang, J.: $H_\infty$ control of a chaotic finance system in the presence of external disturbance and input time-delay. Appl. Math. Comput. 233 (2014), 320-327. | DOI | MR | Zbl
[31] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems. Nonlinear Dynam. 74 (2013), 957-967. | DOI | MR | Zbl
[32] Zheng, J., Du, B.: Projective synchronization of hyperchaotic financial systems. Discrete Dynamics in Nature and Society 2015 (2015), 1-9. | DOI | MR
Cité par Sources :