Geometry of the rolling ellipsoid
Kybernetika, Tome 52 (2016) no. 2, pp. 209-223 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two.
We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two.
DOI : 10.14736/kyb-2016-2-0209
Classification : 35B06, 53A05, 53B21, 58E10, 70B10
Keywords: ellipsoid; rolling maps; Gaussian curvature; geodesics; hypersurface
@article{10_14736_kyb_2016_2_0209,
     author = {Krakowski, Krzysztof Andrzej and Silva Leite, F\'atima},
     title = {Geometry of the rolling ellipsoid},
     journal = {Kybernetika},
     pages = {209--223},
     year = {2016},
     volume = {52},
     number = {2},
     doi = {10.14736/kyb-2016-2-0209},
     mrnumber = {3501158},
     zbl = {1374.53033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0209/}
}
TY  - JOUR
AU  - Krakowski, Krzysztof Andrzej
AU  - Silva Leite, Fátima
TI  - Geometry of the rolling ellipsoid
JO  - Kybernetika
PY  - 2016
SP  - 209
EP  - 223
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0209/
DO  - 10.14736/kyb-2016-2-0209
LA  - en
ID  - 10_14736_kyb_2016_2_0209
ER  - 
%0 Journal Article
%A Krakowski, Krzysztof Andrzej
%A Silva Leite, Fátima
%T Geometry of the rolling ellipsoid
%J Kybernetika
%D 2016
%P 209-223
%V 52
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0209/
%R 10.14736/kyb-2016-2-0209
%G en
%F 10_14736_kyb_2016_2_0209
Krakowski, Krzysztof Andrzej; Silva Leite, Fátima. Geometry of the rolling ellipsoid. Kybernetika, Tome 52 (2016) no. 2, pp. 209-223. doi: 10.14736/kyb-2016-2-0209

[1] Bicchi, A., Sorrentino, R., Piaggio, C.: Dexterous manipulation through rolling. In: ICRA'95, IEEE Int. Conf. on Robotics and Automation 1995, pp. 452-457. | DOI

[2] Borisov, A. V., Mamaev, I. S.: Isomorphism and Hamilton representation of some nonholonomic systems. Sibirsk. Mat. Zh. 48 (2007), 1, 33-45. | DOI | MR | Zbl

[3] Borisov, A. V., Mamaev, I. S.: Rolling of a non-homogeneous ball over a sphere without slipping and twisting. Regular and Chaotic Dynamics 12 (2007), 2, 153-159. | DOI | MR | Zbl

[4] Borisov, A. V., Mamaev, I. S.: Isomorphisms of geodesic flows on quadrics. Regular and Chaotic Dynamics 14 (2009), 4 - 5, 455-465. | DOI | MR | Zbl

[5] Caseiro, R., Martins, P., Henriques, J. F., Leite, F. Silva, Batista, J.: Rolling Riemannian manifolds to solve the multi-class classification problem. In: CVPR 2013, pp. 41-48. | DOI

[6] Chavel, I.: Riemannian Geometry - A Modern Introduction. Second edition. Cambridge Studies in Advanced Mathematics, No. 98. Cambridge University Press, Cambridge 2006. | DOI | MR

[7] Crouch, P., Leite, F. Silva: Rolling maps for pseudo-Riemannian manifolds. In: Proc. 51th IEEE Conference on Decision and Control, (Hawaii 2012). | DOI

[8] Fedorov, Y. N., Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Science 14 (2004), 4, 341-381. | DOI | MR | Zbl

[9] Hüper, K., Krakowski., K. A., Leite, F. Silva: Rolling Maps in a Riemannian Framework. Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30. | MR

[10] Hüper, K., Leite, F. Silva: On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds. J. Dynam. Control Systems 13 (2007), 4, 467-502. | DOI | MR

[11] Prete, N. M. Justin Carpentier J.-P. L. Andrea Del: An analytical model of rolling contact and its application to the modeling of bipedal locomotion. In: Proc. IMA Conference on Mathematics of Robotics 2015, pp. 452-457.

[12] Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Classics in Mathematics 132, 1995. | DOI | MR | Zbl

[13] Knörrer, H.: Geodesics on the ellipsoid. Inventiones Mathematicae 59 (1980), 119-144. | DOI | MR | Zbl

[14] Knörrer, H.: Geodesics on quadrics and a mechanical problem of C. Neumann. J. für die reine und angewandte Mathematik 334 (1982), 69-78. | DOI | MR

[15] Korolko, A., Leite, F. Silva: Kinematics for rolling a Lorentzian sphere. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (IEEE CDC-ECC 2011), Orlando 2011, pp. 6522-6528. | DOI

[16] Krakowski, K., Leite, F. Silva: An algorithm based on rolling to generate smooth interpolating curves on ellipsoids. Kybernetika 50 (2014), 4, 544-562. | DOI | MR

[17] Krakowski, K. A., Leite, F. Silva: Why controllability of rolling may fail: a few illustrative examples. In: Pré-Publicações do Departamento de Matemática, no. 12-26. University of Coimbra 2012, pp. 1-30.

[18] Lee, J. M., J: Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag, Graduate Texts in Mathematics 176, New York 1997. | MR

[19] Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Advances Math. 16 (1975), 2, 197-220. | DOI | MR | Zbl

[20] Moser, J.: Geometry of quadrics and spectral theory. In: The Chern Symposium 1979 (W.-Y. Hsiang, S. Kobayashi, I. Singer, J. Wolf, H.-H. Wu, and A. Weinstein, eds.), Springer, New York 1980, pp. 147-188. | DOI | MR | Zbl

[21] Nomizu, K.: Kinematics and differential geometry of submanifolds. Tôhoku Math. J. 30 (1978), 623-637. | DOI | MR | Zbl

[22] Okamura, A. M., Smaby, N., Cutkosky, M. R.: An overview of dexterous manipulation. In: ICRA'00, IEEE Int Conf. on Robotics and Automation 2000, pp. 255–262. DOI:10.1109/robot.2000.844067 | DOI

[23] Raţiu, T.: The C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. Amer. Math. Soc. 264 (1981), 2, 321-329. | DOI | MR | Zbl

[24] Sharpe, R. W.: Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer-Verlag, Graduate Texts in Mathematics 166, New York 1997. | MR | Zbl

[25] Leite, F. Silva, Krakowski, K. A.: Covariant differentiation under rolling maps. In: Pré-Publicações do Departamento de Matemática, No. 08-22, University of Coimbra 2008, pp. 1-8.

[26] Spivak, M.: Calculus on Manifolds. Mathematics Monograph Series, Addison-Wesley, New York 1965. | Zbl

[27] Uhlenbeck, K.: Minimal 2-spheres and tori in $S^k$. Preprint, 1975.

[28] Veselov, A. P.: A few things I learnt from Jürgen Moser. Regular and Chaotic Dynamics 13 (2008), 6, 515-524. | DOI | MR | Zbl

[29] Weintrit, A., Neumann, T., eds.: Methods and Algorithms in Navigation: Marine Navigation and Safety of Sea Transportation. CRC Press, 2011. | DOI

Cité par Sources :