Keywords: ellipsoid; rolling maps; Gaussian curvature; geodesics; hypersurface
@article{10_14736_kyb_2016_2_0209,
author = {Krakowski, Krzysztof Andrzej and Silva Leite, F\'atima},
title = {Geometry of the rolling ellipsoid},
journal = {Kybernetika},
pages = {209--223},
year = {2016},
volume = {52},
number = {2},
doi = {10.14736/kyb-2016-2-0209},
mrnumber = {3501158},
zbl = {1374.53033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0209/}
}
TY - JOUR AU - Krakowski, Krzysztof Andrzej AU - Silva Leite, Fátima TI - Geometry of the rolling ellipsoid JO - Kybernetika PY - 2016 SP - 209 EP - 223 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0209/ DO - 10.14736/kyb-2016-2-0209 LA - en ID - 10_14736_kyb_2016_2_0209 ER -
Krakowski, Krzysztof Andrzej; Silva Leite, Fátima. Geometry of the rolling ellipsoid. Kybernetika, Tome 52 (2016) no. 2, pp. 209-223. doi: 10.14736/kyb-2016-2-0209
[1] Bicchi, A., Sorrentino, R., Piaggio, C.: Dexterous manipulation through rolling. In: ICRA'95, IEEE Int. Conf. on Robotics and Automation 1995, pp. 452-457. | DOI
[2] Borisov, A. V., Mamaev, I. S.: Isomorphism and Hamilton representation of some nonholonomic systems. Sibirsk. Mat. Zh. 48 (2007), 1, 33-45. | DOI | MR | Zbl
[3] Borisov, A. V., Mamaev, I. S.: Rolling of a non-homogeneous ball over a sphere without slipping and twisting. Regular and Chaotic Dynamics 12 (2007), 2, 153-159. | DOI | MR | Zbl
[4] Borisov, A. V., Mamaev, I. S.: Isomorphisms of geodesic flows on quadrics. Regular and Chaotic Dynamics 14 (2009), 4 - 5, 455-465. | DOI | MR | Zbl
[5] Caseiro, R., Martins, P., Henriques, J. F., Leite, F. Silva, Batista, J.: Rolling Riemannian manifolds to solve the multi-class classification problem. In: CVPR 2013, pp. 41-48. | DOI
[6] Chavel, I.: Riemannian Geometry - A Modern Introduction. Second edition. Cambridge Studies in Advanced Mathematics, No. 98. Cambridge University Press, Cambridge 2006. | DOI | MR
[7] Crouch, P., Leite, F. Silva: Rolling maps for pseudo-Riemannian manifolds. In: Proc. 51th IEEE Conference on Decision and Control, (Hawaii 2012). | DOI
[8] Fedorov, Y. N., Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Science 14 (2004), 4, 341-381. | DOI | MR | Zbl
[9] Hüper, K., Krakowski., K. A., Leite, F. Silva: Rolling Maps in a Riemannian Framework. Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30. | MR
[10] Hüper, K., Leite, F. Silva: On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds. J. Dynam. Control Systems 13 (2007), 4, 467-502. | DOI | MR
[11] Prete, N. M. Justin Carpentier J.-P. L. Andrea Del: An analytical model of rolling contact and its application to the modeling of bipedal locomotion. In: Proc. IMA Conference on Mathematics of Robotics 2015, pp. 452-457.
[12] Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag, Classics in Mathematics 132, 1995. | DOI | MR | Zbl
[13] Knörrer, H.: Geodesics on the ellipsoid. Inventiones Mathematicae 59 (1980), 119-144. | DOI | MR | Zbl
[14] Knörrer, H.: Geodesics on quadrics and a mechanical problem of C. Neumann. J. für die reine und angewandte Mathematik 334 (1982), 69-78. | DOI | MR
[15] Korolko, A., Leite, F. Silva: Kinematics for rolling a Lorentzian sphere. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (IEEE CDC-ECC 2011), Orlando 2011, pp. 6522-6528. | DOI
[16] Krakowski, K., Leite, F. Silva: An algorithm based on rolling to generate smooth interpolating curves on ellipsoids. Kybernetika 50 (2014), 4, 544-562. | DOI | MR
[17] Krakowski, K. A., Leite, F. Silva: Why controllability of rolling may fail: a few illustrative examples. In: Pré-Publicações do Departamento de Matemática, no. 12-26. University of Coimbra 2012, pp. 1-30.
[18] Lee, J. M., J: Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag, Graduate Texts in Mathematics 176, New York 1997. | MR
[19] Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Advances Math. 16 (1975), 2, 197-220. | DOI | MR | Zbl
[20] Moser, J.: Geometry of quadrics and spectral theory. In: The Chern Symposium 1979 (W.-Y. Hsiang, S. Kobayashi, I. Singer, J. Wolf, H.-H. Wu, and A. Weinstein, eds.), Springer, New York 1980, pp. 147-188. | DOI | MR | Zbl
[21] Nomizu, K.: Kinematics and differential geometry of submanifolds. Tôhoku Math. J. 30 (1978), 623-637. | DOI | MR | Zbl
[22] Okamura, A. M., Smaby, N., Cutkosky, M. R.: An overview of dexterous manipulation. In: ICRA'00, IEEE Int Conf. on Robotics and Automation 2000, pp. 255–262. DOI:10.1109/robot.2000.844067 | DOI
[23] Raţiu, T.: The C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. Amer. Math. Soc. 264 (1981), 2, 321-329. | DOI | MR | Zbl
[24] Sharpe, R. W.: Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer-Verlag, Graduate Texts in Mathematics 166, New York 1997. | MR | Zbl
[25] Leite, F. Silva, Krakowski, K. A.: Covariant differentiation under rolling maps. In: Pré-Publicações do Departamento de Matemática, No. 08-22, University of Coimbra 2008, pp. 1-8.
[26] Spivak, M.: Calculus on Manifolds. Mathematics Monograph Series, Addison-Wesley, New York 1965. | Zbl
[27] Uhlenbeck, K.: Minimal 2-spheres and tori in $S^k$. Preprint, 1975.
[28] Veselov, A. P.: A few things I learnt from Jürgen Moser. Regular and Chaotic Dynamics 13 (2008), 6, 515-524. | DOI | MR | Zbl
[29] Weintrit, A., Neumann, T., eds.: Methods and Algorithms in Navigation: Marine Navigation and Safety of Sea Transportation. CRC Press, 2011. | DOI
Cité par Sources :