Keywords: SQP method; active set method; mathematical program with complementarity constraints; strong M-stationarity
@article{10_14736_kyb_2016_2_0169,
author = {Benko, Matus and Gfrerer, Helmut},
title = {An {SQP} method for mathematical programs with complementarity constraints with strong convergence properties},
journal = {Kybernetika},
pages = {169--208},
year = {2016},
volume = {52},
number = {2},
doi = {10.14736/kyb-2016-2-0169},
mrnumber = {3501157},
zbl = {1357.49124},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0169/}
}
TY - JOUR AU - Benko, Matus AU - Gfrerer, Helmut TI - An SQP method for mathematical programs with complementarity constraints with strong convergence properties JO - Kybernetika PY - 2016 SP - 169 EP - 208 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0169/ DO - 10.14736/kyb-2016-2-0169 LA - en ID - 10_14736_kyb_2016_2_0169 ER -
%0 Journal Article %A Benko, Matus %A Gfrerer, Helmut %T An SQP method for mathematical programs with complementarity constraints with strong convergence properties %J Kybernetika %D 2016 %P 169-208 %V 52 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-2-0169/ %R 10.14736/kyb-2016-2-0169 %G en %F 10_14736_kyb_2016_2_0169
Benko, Matus; Gfrerer, Helmut. An SQP method for mathematical programs with complementarity constraints with strong convergence properties. Kybernetika, Tome 52 (2016) no. 2, pp. 169-208. doi: 10.14736/kyb-2016-2-0169
[1] Anitescu, M.: Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints. SIAM J. Optim. 16 (2005), 120-145. | DOI | MR | Zbl
[2] Anitescu, M.: On using the elastic mode in nonlinear programming approaches to mathematical programs with complementarity constraints. SIAM J. Optim. 15 (2005), 1203-1236. | DOI | MR | Zbl
[3] Biegler, L. T., Raghunathan, A. U.: An interior point method for mathematical programs with complementarity constraints (MPCCs). SIAM J. Optim. 15 (2005), 720-750. | DOI | MR | Zbl
[4] DeMiguel, V., Friedlander, M. P., Nogales, F. J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16 (2005), 587-609. | DOI | MR | Zbl
[5] Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Programming 85 (1999), 107-134. | DOI | MR | Zbl
[6] Fletcher, R.: Practical Methods of Optimization 2: Constrained Optimization. John Wiley and Sons, Chichester 1981. | MR
[7] Fletcher, R., Leyffer, S.: Solving mathematical programs with complementary constraints as nonlinear programs. | Zbl
[8] Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17 (2006), 259-286. | DOI | MR | Zbl
[9] Fukushima, M., Tseng, P.: An implementable active-set algorithm for computing a b-stationary point of a mathematical program with linear complementarity constraints. SIAM J. Optim. 12 (2002), 724-739. | DOI | MR | Zbl
[10] Gfrerer, H.: Optimality conditions for disjunctive programs based on generalized differentiation with application to mathematical programs with equilibrium constraints. SIAM J. Optim. 24 (2014), 898-931. | DOI | MR | Zbl
[11] Giallombardo, G., Ralph, D.: Multiplier convergence in trust region methods with application to convergence of decomposition methods for MPECs. Math. Programming 112 (2008), 335-369. | DOI | MR | Zbl
[12] Hu, X. M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123 (2004), 365-390. | DOI | MR
[13] Izmailov, A. F., Pogosyan, A. L., Solodov, M. V.: Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints. Computational Optim. Appl. 51 (2012), 199-221. | DOI | MR | Zbl
[14] Jiang, H., Ralph, D.: QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints. Comput. Optim. Appl. 13 (1999), 25-59. | DOI | MR
[15] Jiang, H., Ralph, D.: Extension of quasi-newton methods to mathematical programs with complementarity constraints. Comput. Optim. Appl. 25 (2002), 123-150. | DOI | MR | Zbl
[16] Kadrani, A., Dussault, J. P., Benchakroun, A.: A new regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 20 (2009), 78-103. | DOI | MR | Zbl
[17] Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties. SIAM J. Optim. 23 (2013), 770-798. | DOI | MR | Zbl
[18] Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with equilibrium constraints revisited. Math. Oper. Res. 40 (2015), 2, 253-275. | DOI | MR
[19] Leyffer, S.: MacMPEC: AMPL collection of MPECs, 2000. DOI
[20] Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17 (2006), 52-77. | DOI | MR | Zbl
[21] Lin, G. H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133 (2005), 63-84. | DOI | MR | Zbl
[22] Luo, Z. Q., Pang, J. S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, New York, Melbourne 1996. | DOI | MR | Zbl
[23] Luo, Z. Q., Pang, J. S., Ralph, D.: Piecewise sequential quadratic programming for mathematical programs with nonlinear complementarity constraints. In: Multilevel Optimization: Algorithms, Complexity, and Applications (A. Migdalas, P. Pardalos, and P. Värbrand, eds.), Kluwer Academic Publishers, Dordrecht 1998, pp. 209-229. | DOI | MR | Zbl
[24] Luo, Z. Q., Pang, J. S., Ralph, D., Wu, S. Q.: Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. Math. Programming 75 (1996), 19-76. | DOI | MR | Zbl
[25] Outrata, J. V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht 1998. | DOI | MR
[26] Powell, M. J. D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis Dundee 1977 (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Springer, Berlin, 1978, pp. 144-157. | DOI | MR | Zbl
[27] Ralph, D., Wright, S. J.: Some properties of regularization and penalization schemes for MPECs. Optim. Methods Software 19 (2004), 527-556. | DOI | MR | Zbl
[28] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Math. Oper. Res. 25 (2000), 1-22. | DOI | MR | Zbl
[29] Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11 (2001), 918-936. | DOI | MR | Zbl
[30] Scholtes, S., Stöhr, M.: Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37 (1999), 617-652. | DOI | MR | Zbl
[31] Steffensen, S., Ulbrich, M.: A new regularization scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 20 (2010), 2504-2539. | DOI | MR
[32] Stein, O.: Lifting mathematical programs with complementarity constraints. Math. Programming 131 (2012), 71-94. | DOI | MR | Zbl
[33] Stöhr, M.: Nonsmooth Trust Region Methods and their Applications to Mathematical Programs with Equilibrium Constraints. Shaker-Verlag, Aachen 1999.
[34] Zhang, J., Liu, G.: A new extreme point algorithm and its application in psqp algorithms for solving mathematical programs with linear complementarity constraints. J. Glob. Optim. 19 (2001), 335-361. | DOI | MR | Zbl
Cité par Sources :