Keywords: polynomial system; control system; homogeneous feedback; stabilization
@article{10_14736_kyb_2016_1_0131,
author = {Jerbi, Hamadi and Kharrat, Thouraya and Sioud, Khaled},
title = {Stabilization of homogeneous polynomial systems in the plane},
journal = {Kybernetika},
pages = {131--152},
year = {2016},
volume = {52},
number = {1},
doi = {10.14736/kyb-2016-1-0131},
mrnumber = {3482615},
zbl = {1374.93301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0131/}
}
TY - JOUR AU - Jerbi, Hamadi AU - Kharrat, Thouraya AU - Sioud, Khaled TI - Stabilization of homogeneous polynomial systems in the plane JO - Kybernetika PY - 2016 SP - 131 EP - 152 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0131/ DO - 10.14736/kyb-2016-1-0131 LA - en ID - 10_14736_kyb_2016_1_0131 ER -
%0 Journal Article %A Jerbi, Hamadi %A Kharrat, Thouraya %A Sioud, Khaled %T Stabilization of homogeneous polynomial systems in the plane %J Kybernetika %D 2016 %P 131-152 %V 52 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0131/ %R 10.14736/kyb-2016-1-0131 %G en %F 10_14736_kyb_2016_1_0131
Jerbi, Hamadi; Kharrat, Thouraya; Sioud, Khaled. Stabilization of homogeneous polynomial systems in the plane. Kybernetika, Tome 52 (2016) no. 1, pp. 131-152. doi: 10.14736/kyb-2016-1-0131
[1] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Analysis, TMA, 7 (1983), 1163-1173. | DOI | MR | Zbl
[2] Coron, J. M., Praly, L.: Adding an integrator for the stabilization problem. Systems Control Lett. 17 (1991), 89-104. | DOI | MR | Zbl
[3] Hahn, W.: Stability of Motion. Springer-Verlag 1967. | DOI | MR | Zbl
[4] Hermes, H.: Homogeneous feedback controls for homogeneous systems. Systems Control Lett. 24 (1995), 7-11. | DOI | MR | Zbl
[5] Jerbi, H., Maaloum, A. Ould: Feedback stabilization of homogeneous polynomial systems of odd degree in the plane. Systems Control Lett. 56 (2007), 611-617. | DOI | MR
[6] Jerbi, H., Kharrat, T.: Asymptotic stabilizability of homogeneous polynomial systems of odd degree. Systems Control Lett. 48 (2003), 87-99. | DOI | MR | Zbl
[7] Kawski, M.: Homogeneous stabilizing feedback laws. Control-Theory Advanced Technol. 6 (1990), 497-516. | MR
[8] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. | DOI | MR | Zbl
[9] Massera, J. L.: Contibutions to stability theory. Ann. Math. 64 (1956), 182-206. | DOI | MR
[10] Sontag, E. D.: A "universal" construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. | DOI | MR | Zbl
[11] Tsinias, J.: Stabilization of affine in control nonlinear systems. Nonlinear Analysis, TMA 12 (1988), 1283-1296. | DOI | MR | Zbl
[12] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization. Math. Control, Signals Systems 2 (1989), 343-357. | DOI | MR | Zbl
Cité par Sources :