Stabilization of homogeneous polynomial systems in the plane
Kybernetika, Tome 52 (2016) no. 1, pp. 131-152
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study the problem of stabilization via homogeneous feedback of single-input homogeneous polynomial systems in the plane. We give a complete classification of systems for which there exists a homogeneous stabilizing feedback that is smooth on $\mathbb{R}^2 \setminus\{ (0,0)\}$ and preserve the homogeneity of the closed loop system. Our results are essentially based on Theorem of Hahn in which the author gives necessary and sufficient conditions of stability of homogeneous systems in the plane.
In this paper, we study the problem of stabilization via homogeneous feedback of single-input homogeneous polynomial systems in the plane. We give a complete classification of systems for which there exists a homogeneous stabilizing feedback that is smooth on $\mathbb{R}^2 \setminus\{ (0,0)\}$ and preserve the homogeneity of the closed loop system. Our results are essentially based on Theorem of Hahn in which the author gives necessary and sufficient conditions of stability of homogeneous systems in the plane.
DOI : 10.14736/kyb-2016-1-0131
Classification : 93D15
Keywords: polynomial system; control system; homogeneous feedback; stabilization
@article{10_14736_kyb_2016_1_0131,
     author = {Jerbi, Hamadi and Kharrat, Thouraya and Sioud, Khaled},
     title = {Stabilization of homogeneous polynomial systems in the plane},
     journal = {Kybernetika},
     pages = {131--152},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.14736/kyb-2016-1-0131},
     mrnumber = {3482615},
     zbl = {1374.93301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0131/}
}
TY  - JOUR
AU  - Jerbi, Hamadi
AU  - Kharrat, Thouraya
AU  - Sioud, Khaled
TI  - Stabilization of homogeneous polynomial systems in the plane
JO  - Kybernetika
PY  - 2016
SP  - 131
EP  - 152
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0131/
DO  - 10.14736/kyb-2016-1-0131
LA  - en
ID  - 10_14736_kyb_2016_1_0131
ER  - 
%0 Journal Article
%A Jerbi, Hamadi
%A Kharrat, Thouraya
%A Sioud, Khaled
%T Stabilization of homogeneous polynomial systems in the plane
%J Kybernetika
%D 2016
%P 131-152
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0131/
%R 10.14736/kyb-2016-1-0131
%G en
%F 10_14736_kyb_2016_1_0131
Jerbi, Hamadi; Kharrat, Thouraya; Sioud, Khaled. Stabilization of homogeneous polynomial systems in the plane. Kybernetika, Tome 52 (2016) no. 1, pp. 131-152. doi: 10.14736/kyb-2016-1-0131

[1] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Analysis, TMA, 7 (1983), 1163-1173. | DOI | MR | Zbl

[2] Coron, J. M., Praly, L.: Adding an integrator for the stabilization problem. Systems Control Lett. 17 (1991), 89-104. | DOI | MR | Zbl

[3] Hahn, W.: Stability of Motion. Springer-Verlag 1967. | DOI | MR | Zbl

[4] Hermes, H.: Homogeneous feedback controls for homogeneous systems. Systems Control Lett. 24 (1995), 7-11. | DOI | MR | Zbl

[5] Jerbi, H., Maaloum, A. Ould: Feedback stabilization of homogeneous polynomial systems of odd degree in the plane. Systems Control Lett. 56 (2007), 611-617. | DOI | MR

[6] Jerbi, H., Kharrat, T.: Asymptotic stabilizability of homogeneous polynomial systems of odd degree. Systems Control Lett. 48 (2003), 87-99. | DOI | MR | Zbl

[7] Kawski, M.: Homogeneous stabilizing feedback laws. Control-Theory Advanced Technol. 6 (1990), 497-516. | MR

[8] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. | DOI | MR | Zbl

[9] Massera, J. L.: Contibutions to stability theory. Ann. Math. 64 (1956), 182-206. | DOI | MR

[10] Sontag, E. D.: A "universal" construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. | DOI | MR | Zbl

[11] Tsinias, J.: Stabilization of affine in control nonlinear systems. Nonlinear Analysis, TMA 12 (1988), 1283-1296. | DOI | MR | Zbl

[12] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization. Math. Control, Signals Systems 2 (1989), 343-357. | DOI | MR | Zbl

Cité par Sources :