Keywords: multi-agent system; port-Hamiltonian system; Casimir function; link dynamics; multi-machine power system
@article{10_14736_kyb_2016_1_0089,
author = {Wang, Bing and Wang, Xinghu and Wang, Honghua},
title = {Output synchronization of multi-agent {port-Hamiltonian} systems with link dynamics},
journal = {Kybernetika},
pages = {89--105},
year = {2016},
volume = {52},
number = {1},
doi = {10.14736/kyb-2016-1-0089},
mrnumber = {3482613},
zbl = {1374.93020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0089/}
}
TY - JOUR AU - Wang, Bing AU - Wang, Xinghu AU - Wang, Honghua TI - Output synchronization of multi-agent port-Hamiltonian systems with link dynamics JO - Kybernetika PY - 2016 SP - 89 EP - 105 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0089/ DO - 10.14736/kyb-2016-1-0089 LA - en ID - 10_14736_kyb_2016_1_0089 ER -
%0 Journal Article %A Wang, Bing %A Wang, Xinghu %A Wang, Honghua %T Output synchronization of multi-agent port-Hamiltonian systems with link dynamics %J Kybernetika %D 2016 %P 89-105 %V 52 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0089/ %R 10.14736/kyb-2016-1-0089 %G en %F 10_14736_kyb_2016_1_0089
Wang, Bing; Wang, Xinghu; Wang, Honghua. Output synchronization of multi-agent port-Hamiltonian systems with link dynamics. Kybernetika, Tome 52 (2016) no. 1, pp. 89-105. doi: 10.14736/kyb-2016-1-0089
[1] Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Automat. Control 52 (2007), 1380-1390. | DOI | MR
[2] Cheng, D., Xi, Z., Hong., Y., Qin, H.: Energy-based stabilization of forced Hamiltonian systems and its application to power systems. Control Theory Appl. 17 (2000), 798-802.
[3] Chopra, N., Spong, M. W.: Passivity-based control of multi-agent systems. In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134. | DOI | Zbl
[4] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | DOI | MR | Zbl
[5] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948. | DOI | MR
[6] Hu, J.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784. | MR | Zbl
[7] Jafarian, M., Vos, E., Persis, C. De, Schaft, A. J. van der, Scherpen, J. M. A.: Formation control of a multi-agent system subject to Coulomb friction. Automatica 61 (2015), 253-262. | DOI | MR
[8] Li, C., Wang, Y.: Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Automat. Sinica 40 (2014), 415-422. | DOI
[9] Liu, T., Jiang, Z. P.: Distributed output-feedback control of nonlinear multi-agent systems. IEEE Trans. Automat. Control 58 (2013), 2912-2917. | DOI | MR
[10] Lu, Q., Sun, Y. Z., Xu, Z., Mochizuki, T.: Decentralized nonlinear optimal excitation control. IEEE Trans. Power Systems 11 (1996), 1957-1962. | DOI
[11] Macchelli, A., Melchiorri, C.: Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Control 50 (2005), 1839-1844. | DOI | MR
[12] Maschke, B., Ortega, R., Schaft, A. J. van der: Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Control 45 (2000), 1498-1502. | DOI | MR
[13] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. | DOI | MR
[14] Ortega, R., Schaft, A. J. van der, Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38 (2002), 585-596. | DOI | MR
[15] Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Control 53 (2008), 1503-1509. | DOI | MR
[16] Sakai, S.: An impedance control for simplified hydraulic model with Casimir functions. In: Proc. SICE Annual Conference, Taipei 2010.
[17] Shi, G., Johansson, K. H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622. | DOI | MR
[18] Sun, Y. Z., Li, X., Song, Y. H.: A new Lyapunov function for transient stability analysis of controlled power systems. Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330.
[19] Schaft, A. J. van der: $L_{2}$-Gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, London 2000. | DOI | MR
[20] Schaft, A. J. van der, Maschke, B. M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51 (2013), 906-937. | DOI | MR
[21] Wang, X., Xu, D., Hong, Y.: Consensus control of nonlinear leader-follower multi-agent systems with actuating disturbances. Systems Control Lett 73 (2014), 58-66. | DOI | MR | Zbl
[22] Wang, Y., Cheng, D., Li, C., Ge, Y.: Dissipative Hamiltonian realization and energy-based $L_{2}$-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat- Control 48 (2003), 1428-1433. | DOI | MR
[23] Wang, Y., Ge, S.: Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Trans. Control Systems Technol. 16 (2008), 202-213. | DOI
[24] Xi, Z., Cheng, D., Lu., Q., Mei, S.: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38 (2002), 527-534. | DOI
Cité par Sources :