Output synchronization of multi-agent port-Hamiltonian systems with link dynamics
Kybernetika, Tome 52 (2016) no. 1, pp. 89-105
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.
In this paper, the output synchronization control is considered for multi-agent port-Hamiltonian systems with link dynamics. By using Hamiltonian energy function and Casimir function comprehensively, the design method is proposed to overcome the difficulties taken by link dynamics. The Hamiltonian function is used to handle the dynamic of agent, while the Casimir function is constructed to deal with the dynamic of link. Thus the Lyapunov function is generated by modifying the Hamiltonian function of forced Hamiltonian systems. Then, the proposed approach is applied in multi-machine power systems, which are interconnected in microgrid with power frequencies as link dynamics. Finally, the simulation result demonstrates the effectiveness of the gotten method.
DOI : 10.14736/kyb-2016-1-0089
Classification : 93C02, 94C15
Keywords: multi-agent system; port-Hamiltonian system; Casimir function; link dynamics; multi-machine power system
@article{10_14736_kyb_2016_1_0089,
     author = {Wang, Bing and Wang, Xinghu and Wang, Honghua},
     title = {Output synchronization of multi-agent {port-Hamiltonian} systems with link dynamics},
     journal = {Kybernetika},
     pages = {89--105},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.14736/kyb-2016-1-0089},
     mrnumber = {3482613},
     zbl = {1374.93020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0089/}
}
TY  - JOUR
AU  - Wang, Bing
AU  - Wang, Xinghu
AU  - Wang, Honghua
TI  - Output synchronization of multi-agent port-Hamiltonian systems with link dynamics
JO  - Kybernetika
PY  - 2016
SP  - 89
EP  - 105
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0089/
DO  - 10.14736/kyb-2016-1-0089
LA  - en
ID  - 10_14736_kyb_2016_1_0089
ER  - 
%0 Journal Article
%A Wang, Bing
%A Wang, Xinghu
%A Wang, Honghua
%T Output synchronization of multi-agent port-Hamiltonian systems with link dynamics
%J Kybernetika
%D 2016
%P 89-105
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0089/
%R 10.14736/kyb-2016-1-0089
%G en
%F 10_14736_kyb_2016_1_0089
Wang, Bing; Wang, Xinghu; Wang, Honghua. Output synchronization of multi-agent port-Hamiltonian systems with link dynamics. Kybernetika, Tome 52 (2016) no. 1, pp. 89-105. doi: 10.14736/kyb-2016-1-0089

[1] Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Automat. Control 52 (2007), 1380-1390. | DOI | MR

[2] Cheng, D., Xi, Z., Hong., Y., Qin, H.: Energy-based stabilization of forced Hamiltonian systems and its application to power systems. Control Theory Appl. 17 (2000), 798-802.

[3] Chopra, N., Spong, M. W.: Passivity-based control of multi-agent systems. In: Advances in Robot Control: from Everyday Physics to Human-Like Movements (S. Kawamura and M. Svinin, eds.), Springer-Verlag, New York 2006, pp. 107-134. | DOI | Zbl

[4] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | DOI | MR | Zbl

[5] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943-948. | DOI | MR

[6] Hu, J.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784. | MR | Zbl

[7] Jafarian, M., Vos, E., Persis, C. De, Schaft, A. J. van der, Scherpen, J. M. A.: Formation control of a multi-agent system subject to Coulomb friction. Automatica 61 (2015), 253-262. | DOI | MR

[8] Li, C., Wang, Y.: Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Automat. Sinica 40 (2014), 415-422. | DOI

[9] Liu, T., Jiang, Z. P.: Distributed output-feedback control of nonlinear multi-agent systems. IEEE Trans. Automat. Control 58 (2013), 2912-2917. | DOI | MR

[10] Lu, Q., Sun, Y. Z., Xu, Z., Mochizuki, T.: Decentralized nonlinear optimal excitation control. IEEE Trans. Power Systems 11 (1996), 1957-1962. | DOI

[11] Macchelli, A., Melchiorri, C.: Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Control 50 (2005), 1839-1844. | DOI | MR

[12] Maschke, B., Ortega, R., Schaft, A. J. van der: Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Control 45 (2000), 1498-1502. | DOI | MR

[13] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. | DOI | MR

[14] Ortega, R., Schaft, A. J. van der, Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38 (2002), 585-596. | DOI | MR

[15] Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Control 53 (2008), 1503-1509. | DOI | MR

[16] Sakai, S.: An impedance control for simplified hydraulic model with Casimir functions. In: Proc. SICE Annual Conference, Taipei 2010.

[17] Shi, G., Johansson, K. H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622. | DOI | MR

[18] Sun, Y. Z., Li, X., Song, Y. H.: A new Lyapunov function for transient stability analysis of controlled power systems. Power Engrg. Soc. Winter Meeting 2 (2000), 1325-1330.

[19] Schaft, A. J. van der: $L_{2}$-Gain and Passivity Techniques in Nonlinear Control. Springer-Verlag, London 2000. | DOI | MR

[20] Schaft, A. J. van der, Maschke, B. M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51 (2013), 906-937. | DOI | MR

[21] Wang, X., Xu, D., Hong, Y.: Consensus control of nonlinear leader-follower multi-agent systems with actuating disturbances. Systems Control Lett 73 (2014), 58-66. | DOI | MR | Zbl

[22] Wang, Y., Cheng, D., Li, C., Ge, Y.: Dissipative Hamiltonian realization and energy-based $L_{2}$-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat- Control 48 (2003), 1428-1433. | DOI | MR

[23] Wang, Y., Ge, S.: Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Trans. Control Systems Technol. 16 (2008), 202-213. | DOI

[24] Xi, Z., Cheng, D., Lu., Q., Mei, S.: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38 (2002), 527-534. | DOI

Cité par Sources :