Keywords: nonlinear systems; observer design; backstepping; counter-convecting transport dynamics
@article{10_14736_kyb_2016_1_0076,
author = {Cai, Xiushan and Liao, Linling and Zhang, Junfeng and Zhang, Wei},
title = {Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics},
journal = {Kybernetika},
pages = {76--88},
year = {2016},
volume = {52},
number = {1},
doi = {10.14736/kyb-2016-1-0076},
mrnumber = {3482612},
zbl = {1374.93055},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0076/}
}
TY - JOUR AU - Cai, Xiushan AU - Liao, Linling AU - Zhang, Junfeng AU - Zhang, Wei TI - Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics JO - Kybernetika PY - 2016 SP - 76 EP - 88 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0076/ DO - 10.14736/kyb-2016-1-0076 LA - en ID - 10_14736_kyb_2016_1_0076 ER -
%0 Journal Article %A Cai, Xiushan %A Liao, Linling %A Zhang, Junfeng %A Zhang, Wei %T Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics %J Kybernetika %D 2016 %P 76-88 %V 52 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0076/ %R 10.14736/kyb-2016-1-0076 %G en %F 10_14736_kyb_2016_1_0076
Cai, Xiushan; Liao, Linling; Zhang, Junfeng; Zhang, Wei. Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics. Kybernetika, Tome 52 (2016) no. 1, pp. 76-88. doi: 10.14736/kyb-2016-1-0076
[1] Andrieu, V., Praly, L.: On the existence of Kazantzis-Kravaris/Luenberger observers. SIAM J. Control Optim. 45 (2006), 432-456. | DOI | MR
[2] Cai, X., Krstic, M.: Control of discrete-time nonlinear systems actuated through counterconvecting transport dynamics. J. Control Decision 1 (2014), 34-50. | DOI
[3] Cai, X., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary. Int. J. Robust. Nonlinear Control 25 (2015), 222-253. | DOI | MR | Zbl
[4] Cai, X., Lin, Y., Liu, L.: Universal stabilisation design for a class of non-linear systems with time-varying input delays. IET Control Theory Appl. 9 (2015), 1481-1490. | DOI | MR
[5] Coron, J., Vazquez, R., Krstic, M., Bastin, G.: Local exponential H2 stabilization of a 2x2 quasilinear hyperbolic system using backstepping. SIAM J. Control Optim. 51 (2013), 2005-2035. | DOI | MR
[6] Curro, C., Fusco, D., Manganaro, N.: A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines. J. Physics A: Math. Theory 44 (2011), 335205. | DOI | MR | Zbl
[7] Santos, V. Dos, Prieur, C.: Boundary control of open channels with numerical and experimental validations. IEEE Trans. Control System Technol. 16 (2008), 1252-1264. | DOI
[8] Fridman, L., Shtessel, Y., Edwards, C., Yan, X. G.: Higer-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18 (2008), 399-412. | DOI | MR
[9] Goatin, P.: The Aw-Rascle vehicular traffic flow model with phase transitions. Math. Computer Modeling 44 (2006), 287-303. | DOI | MR | Zbl
[10] Gugat, M., Dick, M.: Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Math. Control Related Fields 1 (2011), 469-491. | DOI | MR
[11] Krstic, M.: Compensating a string PDE in the actuation or sensing path of an unstable ODE. Systems Control Lett. 54 (2009), 1362-1368. | DOI | MR
[12] Krstic, M.: Compensating actuator and sensor dynamics governed by diffusion PDEs. Systems Control Lett. 58 (2009), 372-377. | DOI | MR | Zbl
[13] Krstic, M., Bekiaris-Liberis, N.: Nonlinear stabilization in infinite dimension. Ann. Rev. Control 37 (2013), 220-231. | DOI
[14] Krstic, M., Smyshlyaev, A.: Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Systems Control Lett. 57 (2008), 750-758. | DOI | MR | Zbl
[15] Meglio, F. Di, Krstic, M., Vazquez, R., Petit, N.: Backstepping stabilization of an underactuated $3 \times 3$ linear hyperbolic system of fluid flow transport equations. In: Proc. American Control Conference, Montreal 2012, pp. 3365-3370. | DOI
[16] Meglio, F. Di, Vazquez, R., Krstic, M.: Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013), 3097-3111. | DOI | MR
[17] Shim, H., Son, Y. I., Seo, J. H.: Semi-global observer for multi-output nonlinear system. System Control Lett. 42 (2001), 233-244. | DOI | MR
[18] Vazquez, R., Krstic, M.: Control of 1-D parabolic PDEs with Volterra nonlinearities. Part I: Design. Automatica 44 (2008), 2778-2790. | DOI | MR
[19] Vazquez, R., Krstic, M.: Control of 1-D parabolic PDEs with Volterra nonlinearities, Part II: Analysis. Automatica 44 (2008), 2791-2803. | DOI | MR
[20] Wu, H., Wang, J.: Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics. Nonlinear Dyn. 72 (2013), 615-628. | DOI | MR | Zbl
Cité par Sources :