Strong Convergence for weighed sums of negatively superadditive dependent random variables
Kybernetika, Tome 52 (2016) no. 1, pp. 52-65
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the strong law of large numbers for weighted sums of negatively superadditive dependent (NSD, in short) random variables is obtained, which generalizes and improves the corresponding one of Bai and Cheng ([2]) for independent and identically distributed random variables to the case of NSD random variables.
In this paper, the strong law of large numbers for weighted sums of negatively superadditive dependent (NSD, in short) random variables is obtained, which generalizes and improves the corresponding one of Bai and Cheng ([2]) for independent and identically distributed random variables to the case of NSD random variables.
DOI : 10.14736/kyb-2016-1-0052
Classification : 60F15
Keywords: NSD random variables; weighted sums; strong law of large numbers
@article{10_14736_kyb_2016_1_0052,
     author = {Chen, Zhiyong and Wang, Haibin and Wang, Xuejun and Hu, Shuhe},
     title = {Strong {Convergence} for weighed sums of negatively superadditive dependent random variables},
     journal = {Kybernetika},
     pages = {52--65},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.14736/kyb-2016-1-0052},
     mrnumber = {3482610},
     zbl = {06562212},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0052/}
}
TY  - JOUR
AU  - Chen, Zhiyong
AU  - Wang, Haibin
AU  - Wang, Xuejun
AU  - Hu, Shuhe
TI  - Strong Convergence for weighed sums of negatively superadditive dependent random variables
JO  - Kybernetika
PY  - 2016
SP  - 52
EP  - 65
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0052/
DO  - 10.14736/kyb-2016-1-0052
LA  - en
ID  - 10_14736_kyb_2016_1_0052
ER  - 
%0 Journal Article
%A Chen, Zhiyong
%A Wang, Haibin
%A Wang, Xuejun
%A Hu, Shuhe
%T Strong Convergence for weighed sums of negatively superadditive dependent random variables
%J Kybernetika
%D 2016
%P 52-65
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0052/
%R 10.14736/kyb-2016-1-0052
%G en
%F 10_14736_kyb_2016_1_0052
Chen, Zhiyong; Wang, Haibin; Wang, Xuejun; Hu, Shuhe. Strong Convergence for weighed sums of negatively superadditive dependent random variables. Kybernetika, Tome 52 (2016) no. 1, pp. 52-65. doi: 10.14736/kyb-2016-1-0052

[1] Alam, K., Saxena, K. M. L.: Positive dependence in multivariate distributions. Commun. Statist. - Theory and Methods 10 (1981), 12, 1183-1196. | DOI | MR | Zbl

[2] Bai, Z. D., Cheng, P. E.: Marcinkiewicz strong laws for linear statistics. Statist. Probab. Lett. 46 (2000), 2, 105-112. | DOI | MR | Zbl

[3] Block, H. M., Savits, T. H., Shaked, M.: Some concepts of negative dependence. Ann. Probab. 10 (1982), 3, 765-772. | DOI | MR | Zbl

[4] Budsaba, K., Chen, P., Panishkan, K., Volodin, A.: Strong laws for weighted sums and certain types U-statistics based on negatively associated random variables. Siberian Advances in Mathematics 19 (2009), 4, 225-232. | DOI | MR

[5] Christofides, T. C., Vaggelatou, E.: A connection between supermodular ordering and positive/negative association. J. Multivariate Anal. 88 (2004), 1, 138-151. | DOI | MR | Zbl

[6] Eghbal, N., Amini, M., Bozorgnia, A.: Some maximal inequalities for quadratic forms of negative superadditive dependence random variables. Statist. Probab. Lett. 80 (2010), 7, 587-591. | DOI | MR | Zbl

[7] Eghbal, N., Amini, M., Bozorgnia, A.: On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables. Statist. Probab. Lett. 81 (2011), 8, 1112-1120. | DOI | MR | Zbl

[8] Gerasimov, M., Kruglov, V., Volodin, A.: On negatively associated random variables. Lobachevskii J. Math. 33 (2012), 1, 47-55. | DOI | MR | Zbl

[9] Hu, S. H., Liu, X. T., Wang, X. H., Li, X. T.: Strong law of large numbers of partial sums for pairwise NQD sequences. J. Math. Res. Appl. 33 (2013), 1, 111-116. | MR | Zbl

[10] Hu, T. Z.: Negatively superadditive dependence of random variables with applications. Chinese J. App. Probab. Statist. 16 (2000), 133-144. | MR | Zbl

[11] Joag-Dev, K., Proschan, F.: Negative association ofrandom variables with applications. Ann. Statist. 11 (1983), 1, 286-295. | DOI | MR

[12] Jing, B. Y., Liang, H. Y.: Strong limit theorems for weighted sums of negatively associated random variables. J. Theoret. Probab. 21 (2008), 4, 890-909. | DOI | MR | Zbl

[13] Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Statistics and Probability Letters, 15 (1992), 209-213. | DOI | MR | Zbl

[14] Meng, Y. J., Lin, Z. Y.: Strong laws of large numbers for $\tilde{\rho}$-mixing random variables. J. Math. Anal. Appl. 365 (2010), 711-717. | DOI | MR | Zbl

[15] Shao, Q. M.: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theoret. Probab. 13 (2000), 2, 343-356. | DOI | MR | Zbl

[16] Shen, A. T., Wu, R. C.: Strong and weak convergence for asymptotically almost negatively associated random variables. Discrete Dynamics in Nature and Society 2013 (2013), 1-7. | DOI | MR | Zbl

[17] Shen, A. T.: On the strong convergence rate for weighted sums of arrays of rowwise negatively orthant dependent random variables. RACSAM 107 (2013), 2, 257-271. | DOI | MR | Zbl

[18] Shen, A. T.: On strong convergence for weighted sums of a class of random variables. Abstract Appl. Anal. 2013 (2013), 1-7. | DOI | MR | Zbl

[19] Shen, A. T., Zhang, Y., Volodin, A.: Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables. Metrika 78 (2015), 295-311. | DOI | MR

[20] Shen, Y., Wang, X. J., Yang, W. Z., Hu, S. H.: Almost sure convergence theorem and strong stability for weighted sums of NSD random variables. Acta Mathematica Sinica, English Series, 29 (2013), 4, 743-756. | DOI | MR | Zbl

[21] Shen, Y., Wang, X. J., Hu, S. H.: On the strong convergence and some inequalities for negatively superadditive dependent sequences. J. Inequalities Appl. 2013 (2013), 1, 448. | DOI | MR | Zbl

[22] Sung, S. H.: On the strong law of large numbers for weighted sums of random variables. Computers Math. Appl. 62 (11) (2011), 4277-4287. | DOI | MR | Zbl

[23] Wang, X. J., Li, X. Q., Hu, S. H., Yang, W. Z.: Strong limit theorems for weighted sums of negatively associated random variables. Stochast. Anal. Appl. 29 (2011), 1, 1-14. | DOI | MR | Zbl

[24] Wang, X. J., Hu, S. H., Yang, W. Z.: Complete convergence for arrays of rowwise negatively orthant dependent random variables. RACSAM 106 (2012), 2, 235-245. | DOI | MR | Zbl

[25] Wang, X.J., Deng, X., Zheng, L.L., Hu, S.H.: Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications. Statistics 48 (4) (2014), 834-850. | DOI | MR | Zbl

[26] Wang, X. J., Shen, A. T., Chen, Z. Y., Hu, S. H.: Complete convergence for weighted sums of NSD random variables and its application in the EV regression model. Test 24 (2015), 166-184. | DOI | MR | Zbl

[27] Wu, Q. Y.: Probability Limit Theory for Mixing Sequence. Science Press of China, Beijing 2006.

[28] Wu, Q. Y., Jiang, Y. Y.: A law of the iterated logarithm of partial sums for NA random variables. J. Korean Statist. Soc. 39 (2010), 199-206. | DOI | MR | Zbl

[29] Wu, Q. Y., Jiang, Y. Y.: Chover's law of the iterated logarithm for negatively associated sequences. J. Systems Sci. Complex. 23 (2010), 293-302. | DOI | MR | Zbl

[30] Yang, W. Z, Hu, S. H., Wang, X. J., Zhang, Q. C.: Berry-Esséen bound of sample quantiles for negatively associated sequence. J. Inequalities Appl. 2011 (2011), 1, 83. | DOI | MR

Cité par Sources :