Directional quantile regression in Octave (and MATLAB)
Kybernetika, Tome 52 (2016) no. 1, pp. 28-51
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Although many words have been written about two recent directional (regression) quantile concepts, their applications, and the algorithms for computing associated (regression) quantile regions, their software implementation is still not widely available, which, of course, severely hinders the dissemination of both methods. Wanting to partly fill in the gap here, we provide all the codes needed for computing and plotting the multivariate (regression) quantile regions in Octave and MATLAB, describe their use in detail, and explain their output with a few carefully designed examples.
Although many words have been written about two recent directional (regression) quantile concepts, their applications, and the algorithms for computing associated (regression) quantile regions, their software implementation is still not widely available, which, of course, severely hinders the dissemination of both methods. Wanting to partly fill in the gap here, we provide all the codes needed for computing and plotting the multivariate (regression) quantile regions in Octave and MATLAB, describe their use in detail, and explain their output with a few carefully designed examples.
DOI : 10.14736/kyb-2016-1-0028
Classification : 62-04, 62H05, 62J99, 65C60
Keywords: quantile regression; multivariate quantile; regression quantile; directional quantile; halfspace depth; regression depth; depth contour; Octave; MATLAB
@article{10_14736_kyb_2016_1_0028,
     author = {Bo\v{c}ek, Pavel and \v{S}iman, Miroslav},
     title = {Directional quantile regression in {Octave} (and {MATLAB)}},
     journal = {Kybernetika},
     pages = {28--51},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.14736/kyb-2016-1-0028},
     mrnumber = {3482609},
     zbl = {1374.62002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0028/}
}
TY  - JOUR
AU  - Boček, Pavel
AU  - Šiman, Miroslav
TI  - Directional quantile regression in Octave (and MATLAB)
JO  - Kybernetika
PY  - 2016
SP  - 28
EP  - 51
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0028/
DO  - 10.14736/kyb-2016-1-0028
LA  - en
ID  - 10_14736_kyb_2016_1_0028
ER  - 
%0 Journal Article
%A Boček, Pavel
%A Šiman, Miroslav
%T Directional quantile regression in Octave (and MATLAB)
%J Kybernetika
%D 2016
%P 28-51
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0028/
%R 10.14736/kyb-2016-1-0028
%G en
%F 10_14736_kyb_2016_1_0028
Boček, Pavel; Šiman, Miroslav. Directional quantile regression in Octave (and MATLAB). Kybernetika, Tome 52 (2016) no. 1, pp. 28-51. doi: 10.14736/kyb-2016-1-0028

[1] Barber, C. B., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Software 22 (1996), 469-483. | DOI | MR | Zbl

[2] Boček, P., Šiman, M.: Directional quantile regression in R. Submitted, 2016.

[3] Chen, Z., Tyler, D. E.: On the behavior of Tukey's depth and median under symmetric stable distributions. J. Statist. Planning Inference 122 (2004), 111-124. | DOI | MR | Zbl

[4] Cheng, Y., Gooijer, J. G. De: On the $u$th geometric conditional quantile. J. Statist. Planning Inference 137 (2007), 1914-1930. | DOI | MR | Zbl

[5] Došlá, Š.: Conditions for bimodality and multimodality of a mixture of two unimodal densities. Kybernetika 45 (2009), 279-292. | MR | Zbl

[6] Dutta, S., Ghosh, A. K., Chaudhuri, P.: Some intriguing properties of Tukey's half-space depth. Bernoulli 17 (2011), 1420-1434. | DOI | MR | Zbl

[7] Eaton, J. W., Bateman, D., Hauberg, S.: GNU Octave Version 3.0.1 Manual: A High-Level Interactive Language for Numerical Computations. CreateSpace Independent Publishing Platform, 2009.

[8] Hallin, M., Lu, Z., Paindaveine, D., Šiman, M.: Local bilinear multiple-output quantile/depth regression. Bernoulli 21 (2015), 1435-1466. | DOI | MR

[9] Hallin, M., Paindaveine, D., Šiman, M.: Multivariate quantiles and multiple-output regression quantiles: From $L_1$ optimization to halfspace depth. The Ann. Statist. 38 (2010), 635-669. | DOI | MR | Zbl

[10] Hallin, M., Paindaveine, D., Šiman, M.: Rejoinder. The Ann. Statist. 38 (2010), 694-703. | DOI | MR

[11] Koenker, R.: Quantile Regression. Cambridge University Press, New York 2005. | DOI | MR | Zbl

[12] Koenker, R., Bassett, G. J.: Regression quantiles. Econometrica 46 (1978), 33-50. | DOI | MR | Zbl

[13] Koltchinskii, V.: $M$-estimation, convexity and quantiles. The Ann. Statist. 25 (1997), 435-477. | DOI | MR | Zbl

[14] Kong, L., Mizera, I.: Quantile tomography: Using quantiles with multivariate data. Statist. Sinica 22 (2012), 1589-1610. | DOI | MR

[15] McKeague, I. W., López-Pintado, S., Hallin, M., Šiman, M.: Analyzing growth trajectories. J. Developmental Origins of Health and Disease 2 (2011), 322-329. | DOI

[16] Paindaveine, D., Šiman, M.: On directional multiple-output quantile regression. J. Multivariate Anal. 102 (2011), 193-212. | DOI | MR | Zbl

[17] Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions. Comput. Statist. Data Anal. 56 (2012), 840-853. | DOI | MR | Zbl

[18] Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions from projection quantiles. Computat. Statist. 27 (2012), 29-49. | DOI | MR | Zbl

[19] Team, R Development Core: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna 2008.

[20] Rousseeuw, P. J., Ruts, I.: The depth function of a population distribution. Metrika 49 (1999), 213-244. | MR | Zbl

[21] MathWorks, The, Inc.: MATLAB. Natick, Massachusetts 2013.

[22] Sturm, J. F.: Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones. Optimization Methods and Software 11-12 (1999), 625-653. DOI  | MR | Zbl

[23] Šiman, M.: On exact computation of some statistics based on projection pursuit in a general regression context. Comm. Statist. - Simul. Comput. 40 (2011), 948-956. | DOI | MR | Zbl

[24] Šiman, M.: Precision index in the multivariate context. Comm. Statist. - Theory and Methods 43 (2014), 377-387. | DOI | MR

Cité par Sources :