Incomparability with respect to the triangular order
Kybernetika, Tome 52 (2016) no. 1, pp. 15-27.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.
DOI : 10.14736/kyb-2016-1-0015
Classification : 03B52, 03E72
Keywords: triangular norm; $T$-partial order; bounded lattice
@article{10_14736_kyb_2016_1_0015,
     author = {A\c{s}{\i}c{\i}, Emel and Kara\c{c}al, Funda},
     title = {Incomparability with respect to the triangular order},
     journal = {Kybernetika},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2016},
     doi = {10.14736/kyb-2016-1-0015},
     mrnumber = {3482608},
     zbl = {06562210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0015/}
}
TY  - JOUR
AU  - Aşıcı, Emel
AU  - Karaçal, Funda
TI  - Incomparability with respect to the triangular order
JO  - Kybernetika
PY  - 2016
SP  - 15
EP  - 27
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0015/
DO  - 10.14736/kyb-2016-1-0015
LA  - en
ID  - 10_14736_kyb_2016_1_0015
ER  - 
%0 Journal Article
%A Aşıcı, Emel
%A Karaçal, Funda
%T Incomparability with respect to the triangular order
%J Kybernetika
%D 2016
%P 15-27
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0015/
%R 10.14736/kyb-2016-1-0015
%G en
%F 10_14736_kyb_2016_1_0015
Aşıcı, Emel; Karaçal, Funda. Incomparability with respect to the triangular order. Kybernetika, Tome 52 (2016) no. 1, pp. 15-27. doi : 10.14736/kyb-2016-1-0015. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0015/

Cité par Sources :