Keywords: triangular norm; $T$-partial order; bounded lattice
@article{10_14736_kyb_2016_1_0015,
author = {A\c{s}{\i}c{\i}, Emel and Kara\c{c}al, Funda},
title = {Incomparability with respect to the triangular order},
journal = {Kybernetika},
pages = {15--27},
year = {2016},
volume = {52},
number = {1},
doi = {10.14736/kyb-2016-1-0015},
mrnumber = {3482608},
zbl = {06562210},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0015/}
}
TY - JOUR AU - Aşıcı, Emel AU - Karaçal, Funda TI - Incomparability with respect to the triangular order JO - Kybernetika PY - 2016 SP - 15 EP - 27 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-1-0015/ DO - 10.14736/kyb-2016-1-0015 LA - en ID - 10_14736_kyb_2016_1_0015 ER -
Aşıcı, Emel; Karaçal, Funda. Incomparability with respect to the triangular order. Kybernetika, Tome 52 (2016) no. 1, pp. 15-27. doi: 10.14736/kyb-2016-1-0015
[1] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333. | DOI | MR
[2] Birkhoff, G.: Lattice Theory. Third edition. Providence 1967. | MR
[3] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. | DOI | MR | Zbl
[4] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square. In: Proc. 1999 EUSFLAT-ESTYLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
[5] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177. | DOI | MR | Zbl
[6] Gottwald, S.: A Treatise on Many-valued Logic. Studies in Logic and Computation, Research Studies Press, Baldock 2001. | MR
[7] Karaçal, F., Aşıcı, E.: Some notes on T-partial order. J. Inequal. Appl. 2013 (2013), 219. | DOI | MR
[8] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. | MR | Zbl
[9] Karaçal, F., Sağıroğlu, Y.: Infinetely $\bigvee$- distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43. | MR
[10] Karaçal, F., Khadjiev, Dj.: $\bigvee$-distributive and infinitely $\bigvee$-distributive t-norms on complete lattice. Fuzzy Sets Syst. 151 (2005), 341-352. | DOI | MR
[11] Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices. Inf. Sci. 176 (2006), 3011-3025. | DOI | MR | Zbl
[12] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71. | MR
[13] Khadjiev, D., Karaçal, F.: Pairwise comaximal elements and the classification of all $\vee$-distributive triangular norms of length 3. Inf. Sci. 204 (2012), 36-43. | DOI | MR | Zbl
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | DOI | MR | Zbl
[15] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502. | DOI | MR | Zbl
[16] Maes, K. C., Mesiarova-Zemankova, A.: Cancellativity properties for t-norms and t-subnorms. Inf. Sci. 179 (2009), 135-150. | DOI | MR | Zbl
[17] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Syst. 137 (2003), 27-42. | DOI | MR | Zbl
[18] Mitsch, H.: A natural partial order for semigroups. Proc. Am. Math. Soc. 97 (1986), 384-388. | DOI | MR | Zbl
[19] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1413. | DOI | MR | Zbl
[20] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, Amsterdam 1983. | MR | Zbl
[21] Schweizer, B., Sklar, A.: Espaces métriques aléatoires. C. R. Acad. Sci. Paris Sér. A 247 (1958), 2092-2094. | MR | Zbl
[22] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl
[23] Schweizer, B., Sklar, A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69-81. | MR
Cité par Sources :