Keywords: fractional-order; multiple delays; Lyapunov stable theorem; synchronization; unknown parameters
@article{10_14736_kyb_2015_6_1068,
author = {Hu, Jianbing and Wei, Hua and Zhao, Lingdong},
title = {Synchronization of fractional-order chaotic systems with multiple delays by a new approach},
journal = {Kybernetika},
pages = {1068--1083},
year = {2015},
volume = {51},
number = {6},
doi = {10.14736/kyb-2015-6-1068},
mrnumber = {3453686},
zbl = {06537796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1068/}
}
TY - JOUR AU - Hu, Jianbing AU - Wei, Hua AU - Zhao, Lingdong TI - Synchronization of fractional-order chaotic systems with multiple delays by a new approach JO - Kybernetika PY - 2015 SP - 1068 EP - 1083 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1068/ DO - 10.14736/kyb-2015-6-1068 LA - en ID - 10_14736_kyb_2015_6_1068 ER -
%0 Journal Article %A Hu, Jianbing %A Wei, Hua %A Zhao, Lingdong %T Synchronization of fractional-order chaotic systems with multiple delays by a new approach %J Kybernetika %D 2015 %P 1068-1083 %V 51 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1068/ %R 10.14736/kyb-2015-6-1068 %G en %F 10_14736_kyb_2015_6_1068
Hu, Jianbing; Wei, Hua; Zhao, Lingdong. Synchronization of fractional-order chaotic systems with multiple delays by a new approach. Kybernetika, Tome 51 (2015) no. 6, pp. 1068-1083. doi: 10.14736/kyb-2015-6-1068
[1] Chen, L. P., Wei, S. B., Chai, Y.: Adaptive projective synchronization between two different fractional-order chaotic systems with fully unknown parameters. Math. Problems Engrg. 2012 (2012), 1-16. | DOI | Zbl
[2] Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro, R.: Linares using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Comm. Nonlinear Sci. Numer. Simul. 22 (2015), 650-659. | DOI | MR
[3] Farivar, F., Shoorehdeli, M. A.: Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control. ISA Trans. 51 (2012), 50-64. | DOI
[4] Goldfain, E.: Fractional dynamics and the Standard Model for particle physics. Comm. Nonlinear Sci. Numer. Simul. 13 (2008), 1397-1404. | DOI | MR | Zbl
[5] Gong, Y. B., Lin, X., Wang, L.: Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks. Science China - Chemistry 54 (2011), 1498-1503. | DOI
[6] Gutierrez, R. E., Rosario, J. M., Machado, J. T.: Fractional order calculus: Basic concepts and engineering applications. Math. Problems Engrg. 2010 (2010), 1-10. | DOI | Zbl
[7] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods Appl. Mech. Engrg. 167 (1998), 57-68. | DOI | MR | Zbl
[8] Li, X. D., Bohner, M.: Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback. Math. Computer Modelling 52 (2010), 643-653. | DOI | MR | Zbl
[9] Li, C. P., Deng, W. H., Xu, D.: Chaos synchronization of the chua system with a fractional order. Physica A - Statist. Mech. Appl. 360 (2006), 171-185. | DOI | MR
[10] Li, M. D., Li, D. H., Wang, J.: Active disturbance rejection control for fractional-order system. ISA Trans. 52 (2013), 365-374. | DOI
[11] Lin, T. C., Kuo, C. H.: H-infinity synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Trans. 50 (2011), 548-556. | DOI
[12] Lu, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 841-846. | DOI | MR
[13] Lu, J. H., Chen, G. R.: Generating multiscroll chaotic attractors: Theories, methods and applications. Int. J. Bifurcation Chaos 16 (2006), 775-858. | DOI | MR
[14] Merrikh-Bayat, F., Karimi-Ghartemani, M.: An efficient numerical algorithm for stability testing of fractional-delay systems. ISA Trans. 48 (2008), 32-37. | DOI
[15] Miao, Q. Y., Fang, J. A., Tang, Y.: Increasing-order projective synchronization of chaotic systems with time delay. Chinese Phys. Lett. 26 (2009), 5, 050501. | DOI
[16] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, 1993. | MR | Zbl
[17] Peng, M. S.: Bifurcation and chaotic behavior in the euler method for a ucar prototype delay model. Chaos Solitons and Fractals 22 (2004), 483-493. | DOI | MR | Zbl
[18] Podlubny, I.: Fractional Differential Equatons: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego 1999. | MR
[19] Slotine, J. J. E., Li, W.: Applied nonlinear Control. Prentice Hall, 1999. | Zbl
[20] Sollund, T., Leib, H.: Feedback communication with reduced delay over noisy time-dispersive channels. IEEE Transa. Commun. 60 (2012), 688-705. | DOI
[21] Tan, S. L., Lu, J. H., Yu, X. H.: Adaptive synchronization of an uncertain complex dynamical network. Chinese Sci. Bull. 58 (2013), 28-29. | DOI
[22] Tan, S. L., Lu, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 576-581. | DOI | MR
[23] Tang, Y., Gao, H., Zou, W., Kurths, J.: Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybernet. 43 (2013), 358-370. | DOI
[24] Tang, Y., Wong, W. K.: Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Networks Learning Systems 24 (2013), 435-447. | DOI
[25] Wang, X. Y., Wang, M. J.: Hyperchaotic Lorenz system. Acta Physica Sinica 56 (2007), 5136-5141. | MR | Zbl
[26] Wang, X. D., Tian, L. X.: Bifurcation analysis and linear control of the Newton-Leipnik system. Chaos Solitions Fractals 27 (2006), 31-38. | DOI | MR | Zbl
[27] Wang, S., Yu, Y. G.: Generalized projective synchronization of fractional order chaotic systems with different dimensions. Chinese Phys. Lett. 29 (2012), 2, 020505. | DOI
[28] Zhao, L. D., Hu, J. B., al., J. A. Fang et: Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. ISA Trans. 52 (2013), 738-743. | DOI
[29] Zhang, Y. L., Luo, M. K.: Fractional rayleigh-duffing-like system and its synchronization. Nonlinear Dynamics 70 (2012), 1173-1183. | DOI | MR | Zbl
[30] Zhang, B. T., Pi, Y. G., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51 (2012), 649-656. | DOI
[31] Zhou, J., Lu, j. A., Lu, J. H.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 652-656. | DOI | MR
[32] Zhu, W., Fang, J. A., Tang, Y.: Identification of fractional-order systems via a switching differential evolution subject to noise perturbations. Physics Lett. A 376 (2012), 3113-3120. | DOI
[33] Zhu, H., He, Z. S., Zhou, S. B.: Lag synchronization of the fractional-order system via nonlinear observer. Int. J. Modern Physics B 25 (2011), 3951-3964. | DOI | Zbl
Cité par Sources :