Synchronization of fractional-order chaotic systems with multiple delays by a new approach
Kybernetika, Tome 51 (2015) no. 6, pp. 1068-1083
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.
In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.
DOI : 10.14736/kyb-2015-6-1068
Classification : 34C15, 34D06, 34H10
Keywords: fractional-order; multiple delays; Lyapunov stable theorem; synchronization; unknown parameters
@article{10_14736_kyb_2015_6_1068,
     author = {Hu, Jianbing and Wei, Hua and Zhao, Lingdong},
     title = {Synchronization of fractional-order chaotic systems with multiple delays by a new approach},
     journal = {Kybernetika},
     pages = {1068--1083},
     year = {2015},
     volume = {51},
     number = {6},
     doi = {10.14736/kyb-2015-6-1068},
     mrnumber = {3453686},
     zbl = {06537796},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1068/}
}
TY  - JOUR
AU  - Hu, Jianbing
AU  - Wei, Hua
AU  - Zhao, Lingdong
TI  - Synchronization of fractional-order chaotic systems with multiple delays by a new approach
JO  - Kybernetika
PY  - 2015
SP  - 1068
EP  - 1083
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1068/
DO  - 10.14736/kyb-2015-6-1068
LA  - en
ID  - 10_14736_kyb_2015_6_1068
ER  - 
%0 Journal Article
%A Hu, Jianbing
%A Wei, Hua
%A Zhao, Lingdong
%T Synchronization of fractional-order chaotic systems with multiple delays by a new approach
%J Kybernetika
%D 2015
%P 1068-1083
%V 51
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1068/
%R 10.14736/kyb-2015-6-1068
%G en
%F 10_14736_kyb_2015_6_1068
Hu, Jianbing; Wei, Hua; Zhao, Lingdong. Synchronization of fractional-order chaotic systems with multiple delays by a new approach. Kybernetika, Tome 51 (2015) no. 6, pp. 1068-1083. doi: 10.14736/kyb-2015-6-1068

[1] Chen, L. P., Wei, S. B., Chai, Y.: Adaptive projective synchronization between two different fractional-order chaotic systems with fully unknown parameters. Math. Problems Engrg. 2012 (2012), 1-16. | DOI | Zbl

[2] Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro, R.: Linares using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Comm. Nonlinear Sci. Numer. Simul. 22 (2015), 650-659. | DOI | MR

[3] Farivar, F., Shoorehdeli, M. A.: Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control. ISA Trans. 51 (2012), 50-64. | DOI

[4] Goldfain, E.: Fractional dynamics and the Standard Model for particle physics. Comm. Nonlinear Sci. Numer. Simul. 13 (2008), 1397-1404. | DOI | MR | Zbl

[5] Gong, Y. B., Lin, X., Wang, L.: Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks. Science China - Chemistry 54 (2011), 1498-1503. | DOI

[6] Gutierrez, R. E., Rosario, J. M., Machado, J. T.: Fractional order calculus: Basic concepts and engineering applications. Math. Problems Engrg. 2010 (2010), 1-10. | DOI | Zbl

[7] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods Appl. Mech. Engrg. 167 (1998), 57-68. | DOI | MR | Zbl

[8] Li, X. D., Bohner, M.: Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback. Math. Computer Modelling 52 (2010), 643-653. | DOI | MR | Zbl

[9] Li, C. P., Deng, W. H., Xu, D.: Chaos synchronization of the chua system with a fractional order. Physica A - Statist. Mech. Appl. 360 (2006), 171-185. | DOI | MR

[10] Li, M. D., Li, D. H., Wang, J.: Active disturbance rejection control for fractional-order system. ISA Trans. 52 (2013), 365-374. | DOI

[11] Lin, T. C., Kuo, C. H.: H-infinity synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach. ISA Trans. 50 (2011), 548-556. | DOI

[12] Lu, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 841-846. | DOI | MR

[13] Lu, J. H., Chen, G. R.: Generating multiscroll chaotic attractors: Theories, methods and applications. Int. J. Bifurcation Chaos 16 (2006), 775-858. | DOI | MR

[14] Merrikh-Bayat, F., Karimi-Ghartemani, M.: An efficient numerical algorithm for stability testing of fractional-delay systems. ISA Trans. 48 (2008), 32-37. | DOI

[15] Miao, Q. Y., Fang, J. A., Tang, Y.: Increasing-order projective synchronization of chaotic systems with time delay. Chinese Phys. Lett. 26 (2009), 5, 050501. | DOI

[16] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, 1993. | MR | Zbl

[17] Peng, M. S.: Bifurcation and chaotic behavior in the euler method for a ucar prototype delay model. Chaos Solitons and Fractals 22 (2004), 483-493. | DOI | MR | Zbl

[18] Podlubny, I.: Fractional Differential Equatons: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego 1999. | MR

[19] Slotine, J. J. E., Li, W.: Applied nonlinear Control. Prentice Hall, 1999. | Zbl

[20] Sollund, T., Leib, H.: Feedback communication with reduced delay over noisy time-dispersive channels. IEEE Transa. Commun. 60 (2012), 688-705. | DOI

[21] Tan, S. L., Lu, J. H., Yu, X. H.: Adaptive synchronization of an uncertain complex dynamical network. Chinese Sci. Bull. 58 (2013), 28-29. | DOI

[22] Tan, S. L., Lu, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 576-581. | DOI | MR

[23] Tang, Y., Gao, H., Zou, W., Kurths, J.: Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Trans. Cybernet. 43 (2013), 358-370. | DOI

[24] Tang, Y., Wong, W. K.: Distributed synchronization of coupled neural networks via randomly occurring control. IEEE Trans. Neural Networks Learning Systems 24 (2013), 435-447. | DOI

[25] Wang, X. Y., Wang, M. J.: Hyperchaotic Lorenz system. Acta Physica Sinica 56 (2007), 5136-5141. | MR | Zbl

[26] Wang, X. D., Tian, L. X.: Bifurcation analysis and linear control of the Newton-Leipnik system. Chaos Solitions Fractals 27 (2006), 31-38. | DOI | MR | Zbl

[27] Wang, S., Yu, Y. G.: Generalized projective synchronization of fractional order chaotic systems with different dimensions. Chinese Phys. Lett. 29 (2012), 2, 020505. | DOI

[28] Zhao, L. D., Hu, J. B., al., J. A. Fang et: Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. ISA Trans. 52 (2013), 738-743. | DOI

[29] Zhang, Y. L., Luo, M. K.: Fractional rayleigh-duffing-like system and its synchronization. Nonlinear Dynamics 70 (2012), 1173-1183. | DOI | MR | Zbl

[30] Zhang, B. T., Pi, Y. G., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51 (2012), 649-656. | DOI

[31] Zhou, J., Lu, j. A., Lu, J. H.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 652-656. | DOI | MR

[32] Zhu, W., Fang, J. A., Tang, Y.: Identification of fractional-order systems via a switching differential evolution subject to noise perturbations. Physics Lett. A 376 (2012), 3113-3120. | DOI

[33] Zhu, H., He, Z. S., Zhou, S. B.: Lag synchronization of the fractional-order system via nonlinear observer. Int. J. Modern Physics B 25 (2011), 3951-3964. | DOI | Zbl

Cité par Sources :