Necessary conditions for vector optimization in infinite dimension
Kybernetika, Tome 51 (2015) no. 6, pp. 1023-1034.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper we present second-order necessary conditions for constrained vector optimization problems in infinite-dimensional spaces. In this way we generalize some corresponding results obtained earlier.
DOI : 10.14736/kyb-2015-6-1023
Classification : 49J50, 49J52, 49K10, 90C29, 90C30
Keywords: $C^{1{}, 1}$–function; ${\ell }$–stable function; generalized second-order directional derivative; Dini derivative; vector optimization
@article{10_14736_kyb_2015_6_1023,
     author = {Dvorsk\'a, Marie and Pastor, Karel},
     title = {Necessary conditions for vector optimization in infinite dimension},
     journal = {Kybernetika},
     pages = {1023--1034},
     publisher = {mathdoc},
     volume = {51},
     number = {6},
     year = {2015},
     doi = {10.14736/kyb-2015-6-1023},
     mrnumber = {3453683},
     zbl = {06537793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1023/}
}
TY  - JOUR
AU  - Dvorská, Marie
AU  - Pastor, Karel
TI  - Necessary conditions for vector optimization in infinite dimension
JO  - Kybernetika
PY  - 2015
SP  - 1023
EP  - 1034
VL  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1023/
DO  - 10.14736/kyb-2015-6-1023
LA  - en
ID  - 10_14736_kyb_2015_6_1023
ER  - 
%0 Journal Article
%A Dvorská, Marie
%A Pastor, Karel
%T Necessary conditions for vector optimization in infinite dimension
%J Kybernetika
%D 2015
%P 1023-1034
%V 51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1023/
%R 10.14736/kyb-2015-6-1023
%G en
%F 10_14736_kyb_2015_6_1023
Dvorská, Marie; Pastor, Karel. Necessary conditions for vector optimization in infinite dimension. Kybernetika, Tome 51 (2015) no. 6, pp. 1023-1034. doi : 10.14736/kyb-2015-6-1023. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-6-1023/

Cité par Sources :