Keywords: non-convex quadratic optimization; recurrent neural network model; global optimality conditions; global convergence
@article{10_14736_kyb_2015_5_0890,
author = {Malek, Alaeddin and Hosseinipour-Mahani, Najmeh},
title = {Solving a class of non-convex quadratic problems based on generalized {KKT} conditions and neurodynamic optimization technique},
journal = {Kybernetika},
pages = {890--908},
year = {2015},
volume = {51},
number = {5},
doi = {10.14736/kyb-2015-5-0890},
mrnumber = {3445990},
zbl = {06537786},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0890/}
}
TY - JOUR AU - Malek, Alaeddin AU - Hosseinipour-Mahani, Najmeh TI - Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique JO - Kybernetika PY - 2015 SP - 890 EP - 908 VL - 51 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0890/ DO - 10.14736/kyb-2015-5-0890 LA - en ID - 10_14736_kyb_2015_5_0890 ER -
%0 Journal Article %A Malek, Alaeddin %A Hosseinipour-Mahani, Najmeh %T Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique %J Kybernetika %D 2015 %P 890-908 %V 51 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0890/ %R 10.14736/kyb-2015-5-0890 %G en %F 10_14736_kyb_2015_5_0890
Malek, Alaeddin; Hosseinipour-Mahani, Najmeh. Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique. Kybernetika, Tome 51 (2015) no. 5, pp. 890-908. doi: 10.14736/kyb-2015-5-0890
[1] Bazaraa, M. S., Shetty, C. M.: Nonlinear Programming Theory and Algorithms. Wiley and Sons, New York 1990. | MR | Zbl
[2] Beyer, D., Ogier, R.: Tabu learning: A neural network search method for solving nonconvex optimization problems. IEEE Int. Joint Conf. Neural Networks 2 (2000), 953-961.
[3] Bian, W., Xue, X.: Subgradient-based neural networks for nonsmooth nonconvex optimization problems. IEEE Trans. Neural Networks 20 (2009), 6, 1024-1038. | DOI | MR
[4] Chicone, C.: Ordinary Differential Equations with Applications. Second edition. Springer-Verlag, New York 2006. | MR
[5] Forti, M., Nistri, P., Quincampoix, M.: Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality. IEEE Trans. Neural Networka 17 (2006), 6, 1471-1486. | DOI
[6] Gao, X. B.: A novel neural network for nonlinear convex programming problems. IEEE Trans. Neural Network 15 (2004), 613-621. | DOI
[7] Hu, X.: Neurodynamic optimization: Towards nonconvexity. In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, ed.), IN-TECH, 2008, pp. 289-308. | DOI
[8] Jeyakumar, V., Rubinov, A. M., Wu, Z. Y.: Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions. Math. Program., Ser. A 110 (2007), 521-541. | DOI | MR | Zbl
[9] Jeyakumar, V., Lee, G. M., Li, G. Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim 20 (2009), 2, 983-1001. | DOI | MR | Zbl
[10] Jeyakumar, V., Srisatkunarajah, S.: Lagrange multiplier necessary condition for global optimality for non-convex minimization over a quadratic constraint via S-lemma. Optim. Lett. 3 (2009), 23-33. | DOI | MR
[11] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, 2002.
[12] Malek, A.: Application of recurrent neural networks to optimization problems. In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, eds.), IN-TECH, 2008, pp. 255-288. | DOI
[13] Malek, A., Alipour, M.: Numerical solution for linear and quadratic programming problems using a recurrent neural network. Appl. Math. Comput 192 (2007), 27-39. | DOI | MR | Zbl
[14] Malek, A., Hosseinipour-Mahani, N., Ezazipour, S.: Efficient recurrent neural network model for the solution of general nonlinear optimization problems. Optimization Methods and Software 25 (2010), 489-506. | DOI | MR | Zbl
[15] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.: Double projection neural network for solving pseudomonotone variational inequalities. Fixed Point Theory 12 (2011), 2, 401-418. | MR
[16] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.: Projected dynamical systems and optimization problems. Bull. Iranian Math. Soc. 37 (2011), 2, 81-96. | MR | Zbl
[17] Malek, A., Yari, A.: Primal-dual solution for the linear programming problem using neural network. Appl. Math. Comput. 169 (2005), 198-211. | DOI | MR
[18] Miller, R. K., Michel, A. N.: Ordinary Differential Equations. Academic Press, 1982. | DOI | MR | Zbl
[19] Polik, I., Terlaky, T.: A survey of the S-Lemma. SIAM Rev. 49 (2007), 371-418. | DOI | MR | Zbl
[20] Sun, C. Y., Feng, C. B.: Neural networks for nonconvex nonlinear programming problems: A switching control approach. In: Lecture Notes in Computer Science 3495, Springer-Verlag, Berlin 2005, pp. 694-699. | DOI | Zbl
[21] Tao, Q., Liu, X., Xue, M. S.: A dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems. Appl. Math. Comput. 150 (2004), 811-820. | DOI | MR | Zbl
[22] Tian, Y., Lu, Ch.: Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. J. Industr. Managment Optim. 7 (2011), 1027-1039. | DOI | MR | Zbl
[23] Xia, Y., Feng, G., Wang, J.: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equation. Neural Networks 17 (2004), 1003-1015. | DOI
[24] Xia, Y. S., Feng, G., Wang, J.: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints. IEEE Trans. Neural Networks 19 (2008), 1340-1353. | DOI
[25] Xue, X., Bian, W.: A project neural network for solving degenerate convex quadratic program. Neurocomputing 70 (2007), 2449-2459. | DOI
[26] Yan, Z., Wang, J., Li, G.: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Neural networks 55 (2014), 20-29. | DOI | Zbl
[27] Yashtini, M., Malek, A.: Solving complementarity and variational inequalities problems using neural networks. Appl. Math. Comput. 190 (2007), 216-230. | DOI | MR | Zbl
[28] Zhang, Y.: Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization. Math. Programming 55 (1992), 109-124. | DOI | MR | Zbl
[29] Zheng, X. J., Sun, X. L., Li, D., Xu, Y. F.: On zero duality gap in nonconvex quadratic programming problems. Global Optim. 52 (2012), 229-242. | DOI | MR | Zbl
Cité par Sources :