On some relaxations commonly used in the study of linear systems
Kybernetika, Tome 51 (2015) no. 5, pp. 830-855
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This note proposes a quite general mathematical proposition which can be a starting point to prove many well-known results encountered while studying the theory of linear systems through matrix inequalities, including the S-procedure, the projection lemma and few others. Moreover, the problem of robustness with respect to several parameter uncertainties is revisited owing to this new theorem, leading to LMI (Linear Matrix Inequality)-based conditions for robust stability or performance analysis with respect to ILFR (Implicit Linear Fractional Representation)-based parametric uncertainty. These conditions, though conservative, are computationally very tractable and make a good compromise between conservatism and engineering applicability.
This note proposes a quite general mathematical proposition which can be a starting point to prove many well-known results encountered while studying the theory of linear systems through matrix inequalities, including the S-procedure, the projection lemma and few others. Moreover, the problem of robustness with respect to several parameter uncertainties is revisited owing to this new theorem, leading to LMI (Linear Matrix Inequality)-based conditions for robust stability or performance analysis with respect to ILFR (Implicit Linear Fractional Representation)-based parametric uncertainty. These conditions, though conservative, are computationally very tractable and make a good compromise between conservatism and engineering applicability.
DOI : 10.14736/kyb-2015-5-0830
Classification : 93C05, 93C35, 93D09
Keywords: LMI relaxations; robust analysis; parametric uncertainty
@article{10_14736_kyb_2015_5_0830,
     author = {Bachelier, Olivier and Mehdi, Driss},
     title = {On some relaxations commonly used in the study of linear systems},
     journal = {Kybernetika},
     pages = {830--855},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.14736/kyb-2015-5-0830},
     mrnumber = {3445987},
     zbl = {06537783},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0830/}
}
TY  - JOUR
AU  - Bachelier, Olivier
AU  - Mehdi, Driss
TI  - On some relaxations commonly used in the study of linear systems
JO  - Kybernetika
PY  - 2015
SP  - 830
EP  - 855
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0830/
DO  - 10.14736/kyb-2015-5-0830
LA  - en
ID  - 10_14736_kyb_2015_5_0830
ER  - 
%0 Journal Article
%A Bachelier, Olivier
%A Mehdi, Driss
%T On some relaxations commonly used in the study of linear systems
%J Kybernetika
%D 2015
%P 830-855
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0830/
%R 10.14736/kyb-2015-5-0830
%G en
%F 10_14736_kyb_2015_5_0830
Bachelier, Olivier; Mehdi, Driss. On some relaxations commonly used in the study of linear systems. Kybernetika, Tome 51 (2015) no. 5, pp. 830-855. doi: 10.14736/kyb-2015-5-0830

[1] Apkarian, P., Gahinet, P.: A linear matrix inequality approach to ${H}_{\infty}$ control. Int. J. Robust Nonlinear Control 4 (1994), 421-448. | DOI | MR

[2] Arzelier, D., Peaucelle, D., Sahli, S.: Robust static output feedback stabilization for polytopic uncertain systems. In: Robust Control Design, ROCOND, Milan 2003.

[3] Bachelier, O., Henrion, D., Pradin, B., Mehdi, D.: Robust matrix root-clustering of a matrix in intersections or unions of subregions. SIAM J. Control Optim. 43 (2004), 3, 1078-1093. | DOI | MR

[4] Bachelier, O., Mehdi, D.: Robust matrix root-clustering through extended KYP Lemma. SIAM J. Control Optim. 45 (2006), 1, 368-381. | DOI | MR

[5] Bosche, J., Bachelier, O., Mehdi, D.: An approach for robust matrix root-clustering analysis in a union of regions. IMA J. Math. Control Inform. 22 (2005), 227-239. | DOI | MR | Zbl

[6] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.: Linear matrix inequalities in system and control zheory. SIAM Studies in Applied Mathematics 15 (1994). | DOI | MR

[7] Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach. IEEE Trans. Automat. Control 50 (2005), 3, 365-370. | DOI | MR

[8] Chilali, M., Gahinet, P.: ${H}_{\infty}$ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Control 41 (1996), 3, 358-367. | DOI | MR

[9] Oliveira, M. C. de, Bernussou, J., Geromel, J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 4, 261-265 | DOI | MR | Zbl

[10] Oliveira, M. C. de, Geromel, J. C., Bernussou, J.: Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions. SIAM J. Control Optim. 41 (2002), 3, 700-711. | DOI | MR | Zbl

[11] Dinh, M., Scorletti, G., Fromion, V., Magarotto, E.: Parameter dependent {H}$_{\infty}$ control by finite dimensional LMI optimization: Application to trade-off dependent control. Int. J. Robust and Nonlinear Control 15 (2005), 383-406. | DOI | MR | Zbl

[12] Ebihara, Y., Peaucelle, D., Arzelier, D.: S-variable Approach to LMI-based Robust Control. Communications and Control Engineering Series, Springer, London 2014. | DOI | MR | Zbl

[13] Ebihara, Y., Hagiwara, T.: A dilated LMI approach to robust performances analysis of linear time-invariant uncertain systems. Automatica 41 (2005), 11, 1933-1941. | DOI | MR

[14] Ebihara, Y., Hagiwara, T.: On the degree of polynomial parameter-dependent Lyapunov function for the robust stability of single parameter-dependent LTI systems: A counter-example to Barmish's conjecture. Automatica 42 (2006), 1599-1603. | DOI | MR

[15] Feng, Y., Yagoubi, M., Chevrel, P.: Dilated LMI characterizations for linear time-invariant singular systems. Int. J. Control 83 (2010), 11, 2276-2284. | DOI | MR

[16] Finsler, P.: Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen: Comment. Math. Helv. 9 (1937), 188-192. | DOI | MR

[17] Geromel, J. C., Oliveira, M. C. de, Hsu, L.: LMI characterization of structural and robust stability. Linear Algebra Appl. 285 (1998), 69-80. | DOI | MR | Zbl

[18] Graham, M. R, Oliveira, M. C. de: Robust analysis with respect to real parameter uncertainty. In: Proc. 47th IEEE Conference on Decision and Control (CDC), Cancun 2008. | DOI

[19] Graham, M. R., Oliveira, M. C. de: Linear matrix inequality tests for frequency domain inequalities with affine multipliers. Automatica 46 (2010), 897-901. | DOI | MR | Zbl

[20] Graham, M. R, Oliveira, M. C. de, Callafon, R. A.: Frequency domain conditions via linear matrix inequalities. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007. | DOI

[21] Graham, M. R., Oliveira, M. C. de, Callafon, R. A.: An alternative Kalman-Yakubovich-Popov lemma and some extensions. Automatica 45 (2009), 6, 1489-1496. | DOI | MR | Zbl

[22] Gusev, S. V., Likhtarnikov, A. L.: Kalman-Popov-Yakubovich lemma and the S-procedure: A historical essay. Automation Remote Control 67 (2006), 11, 1768-1810. | DOI | MR | Zbl

[23] Hecker, S., Varga, A.: Generalized LFT-based representation of parametric models. Europ. J. Control, 10 (2004), 4, 326-337. | DOI | MR

[24] Hill, R. D.: Eigenvalue location using certain matrix functions and geometric curves. Linear Algebra Appl. 16 (1977), 83-91. | DOI | MR | Zbl

[25] Iwasaki, T., Hara, S.: Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Trans. Automat. Control 50 (2005), 1, 41-59. | DOI | MR

[26] Iwasaki, T., Meinsma, G., Fu, M.: Generalized S-procedure and finite frequency KYP lemma. Math. Problems Engrg. 6 (2000), 305-320. | DOI | MR | Zbl

[27] Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications. Imperial College, 2009. | DOI | MR | Zbl

[28] Lyapunov, A.: Problème général de la stabilité du mouvement. Annales de la Faculté de Sciences de Toulouse 1907, Translated into French from the original Russian text, Kharkov 1892. | DOI

[29] Manceaux-Cumer, C., Chrétien, J.-P.: Minimal LFT form of a spacecraft built up from two bodies. In: Proc. AIAA Guidance, Navigation, and Control Conference, Montréal 2001. | DOI

[30] Ostrowski, A., Schneider, H.: Some theorems on the inertia of general matrices. J. Math. Anal. Appl. 4 (1962), 72-84. | DOI | MR | Zbl

[31] Peaucelle, D.: Quadratic separation for uncertain descriptor system analysis, strict LMI conditions. In: Proc. 46th IEEE Conference on Decision and Control (CDC), New Orleans 2007. | DOI

[32] Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J.: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 1, 21-30. | DOI | MR | Zbl

[33] Peaucelle, D., Arzelier, D., Henrion, D., Gouaisbault, F.: Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation. Automatica 43 (2007), 796-804. | DOI | MR

[34] Pipeleers, G., Demeulenaere, B., Swevers, J., Vandenberghe, L.: Extended LMI characterizations for stability and performance of linear systems. Systems Control Lett. 58 (2009), 7, 510-518. | DOI | MR | Zbl

[35] Rantzer, A.: On the Kalman-Yakubovich-Popov lemma. Systems Control Lett. 28 (1996), 7-10. | DOI | MR | Zbl

[36] Sari, B., Bachelier, O., Mehdi, D.: Improved robust $D_U$-stability measures via S-procedure. In: Proc. American Control Conference (ACC), Seattle 2008. | DOI

[37] Scherer, C. W.: A full block S-procedure with applications. In: Proc. 36th Conference on Decision Control (CDC), San Diego 1997. | DOI

[38] Scherer, C. W.: LPV control and full block multipliers. Automatica 37 (2001), 361-375. | DOI | MR | Zbl

[39] Skelton, R. E., Iwasaki, T., Grigoriadis, K.: A Unified Approach to Linear Control Design. Taylor and Francis series in Systems and Control, 1997.

[40] Stein, P.: Some general theorems on iterants. J. Res. National Bureau of Standards 48 (1952), 82-83. | DOI | MR

[41] Yakubovich, V. A.: S-procedure in nonlinear control theory. Vestnik Leningrad Univ. 1 (1971), 62-77. | MR | Zbl

Cité par Sources :