Distributed $H_{\infty }$ estimation for moving target under switching multi-agent network
Kybernetika, Tome 51 (2015) no. 5, pp. 814-829
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the distributed $H_\infty$ estimation problem is investigated for a moving target with local communication and switching topology. Based on the solution of the algebraic Riccati equation, a recursive algorithm is proposed using constant gain. The stability of the proposed algorithm is analysed by using the Lyapounov method, and a lower bound for estimation errors is obtained for the proposed common $H_\infty$ filter. Moreover, a bound for the $H_{\infty}$ parameter is obtained by means of the solution of the algebraic Riccati equation. Finally, a simulation example is employed to illustrate the effectiveness of the proposed estimation algorithm.
In this paper, the distributed $H_\infty$ estimation problem is investigated for a moving target with local communication and switching topology. Based on the solution of the algebraic Riccati equation, a recursive algorithm is proposed using constant gain. The stability of the proposed algorithm is analysed by using the Lyapounov method, and a lower bound for estimation errors is obtained for the proposed common $H_\infty$ filter. Moreover, a bound for the $H_{\infty}$ parameter is obtained by means of the solution of the algebraic Riccati equation. Finally, a simulation example is employed to illustrate the effectiveness of the proposed estimation algorithm.
DOI : 10.14736/kyb-2015-5-0814
Classification : 62A10, 93E12
Keywords: multi-agent systems; distributed estimation; $H_\infty $ filter; switching topology
@article{10_14736_kyb_2015_5_0814,
     author = {Chen, Hu and Weiwei, Qin and Bing, He and Gang, Liu},
     title = {Distributed $H_{\infty }$ estimation for moving target under switching multi-agent network},
     journal = {Kybernetika},
     pages = {814--829},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.14736/kyb-2015-5-0814},
     mrnumber = {3445986},
     zbl = {06537782},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0814/}
}
TY  - JOUR
AU  - Chen, Hu
AU  - Weiwei, Qin
AU  - Bing, He
AU  - Gang, Liu
TI  - Distributed $H_{\infty }$ estimation for moving target under switching multi-agent network
JO  - Kybernetika
PY  - 2015
SP  - 814
EP  - 829
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0814/
DO  - 10.14736/kyb-2015-5-0814
LA  - en
ID  - 10_14736_kyb_2015_5_0814
ER  - 
%0 Journal Article
%A Chen, Hu
%A Weiwei, Qin
%A Bing, He
%A Gang, Liu
%T Distributed $H_{\infty }$ estimation for moving target under switching multi-agent network
%J Kybernetika
%D 2015
%P 814-829
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0814/
%R 10.14736/kyb-2015-5-0814
%G en
%F 10_14736_kyb_2015_5_0814
Chen, Hu; Weiwei, Qin; Bing, He; Gang, Liu. Distributed $H_{\infty }$ estimation for moving target under switching multi-agent network. Kybernetika, Tome 51 (2015) no. 5, pp. 814-829. doi: 10.14736/kyb-2015-5-0814

[1] Cattivelli, F. S., Sayed, A. H.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58 (2010), 1035-1048. | DOI | MR

[2] Cattivelli, F. S., Sayed, A. H.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Automat. Control 55 (2010), 2069-2084. | DOI | MR

[3] Dong, H., Wang, Z., Gao, H.: Distributed $H_\infty$ filtering for a class of Markovian jump nonlinear time-delay systems over Lossy sensor networks. IEEE Trans. Industr. Electronics 60 (2013), pp. 4665-4672. | DOI

[4] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | MR | Zbl

[5] Hong, Y., Hu, J., Gao, L. X.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. | DOI | MR | Zbl

[6] Hong, Y., Wang, X.: Multi-agent tracking of a high-dementional active leader with switching topology. J. Systems Sci. Complex. 22 (2009), 722-731. | DOI | MR

[7] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, 2012. | Zbl

[8] Hu, J., Xie, L., Zhang, C.: Diffusion Kalman filtering based on covariance intersection. In: Proc. 18th IFAC World Congress, Milano 2011, pp. 12471-12476. | DOI | MR

[9] Kailath, T., Sayed, A. H., Hassibi, B.: Linear Estimation. Prentice Hall, New Jersey 2000. | Zbl

[10] Kar, S., Moura, J. M. F.: Grossip and distributed Kalman filtering: weak consensus under weak detectability. IEEE Trans. Signal Process. 59 (2011), 1766-1784. | DOI | MR

[11] Marshall, A. W., Olkin, I., Arnold, B. C.: Inequalities: Theory of Majorization and Its Applications. Springer-Verlag, New York 2010. | MR | Zbl

[12] Nelson, T. R., Freeman, R. A.: Decentralized $H_\infty$ filtering in a multi-agent system. In: Proc. 2009 American Control Conference, St. Louis 2009, pp. 5755-5760. | DOI

[13] Nemirovskii, A., Gahinet, P.: The projective method for solving linear matrix inequalities. In: Proc. 1994 American Control Conference, Baltimore 1994, pp. 840-844. | DOI

[14] Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. | DOI

[15] Olfati-Saber, R.: Kalman-consensus filter : optimality, stability, and performance. In: Proc. 48th IEEE Conference on Decision and Control, Proc. 28th Chinese Control Conference, Shanghai 2009, pp. 7036-7042. | DOI

[16] Olfati-Saber, R., Jalalkamali, P.: Collaborative target tracking using distributed Kalman filtering on mobile sensor networks. In: Proc. 2011 American Control Conference, San Francisco 2011, pp. 1100-1105. | DOI

[17] Ramamurthy, H., Prabhu, B. S., Gadh, R., Madni, A. M.: Wireless industrial monitoring and control using a smart sensor platform. IEEE Sensors J. 7 (2007), 611-618. | DOI

[18] Saboori, I., Khorasani, K.: $H_\infty$ consensus achievement of multi-agent systems with disrected and switching topology networks. IEEE Trans. Automat. Control 59 (2014), 3104-3109. | DOI | MR

[19] Shen, B., Wang, Z., Hung, Y. S.: Distributed $H_\infty$-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case. Automatica 46 (2010), 1682-1688. | DOI | MR | Zbl

[20] Ugrinovskii, V.: Distributed robust filtering with $H_\infty$ consensus of estimates. Automatica 47 (2011), 1-13. | DOI | MR | Zbl

[21] Ugrinovskii, V., Fridman, E.: A Round-Robin type protocol for distributed estimation with $H_\infty$ consensus. Systems Control Lett. 69 (2014), 103-110. | DOI | MR | Zbl

[22] Zhang, Q., Zhang, J.: Distributed parameter estimation over unreliable networks with Markovian switching topologies. IEEE Trans. Automat. Control 57 (2012), 2545-2560. | DOI | MR

[23] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target under switching interconnection network. In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823. | DOI

[24] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target based on state-consensus strategy. IEEE Trans. Automat. Control 58 (2013), 2096-2101. | DOI | MR

Cité par Sources :