Keywords: absolute synchronization; delay; linear stability; neural network
@article{10_14736_kyb_2015_5_0800,
author = {Wang, Lin Jun and Xie, You Xiang and Wei, Zhou Chao and Peng, Jian},
title = {Stability analysis and absolute synchronization of a three-unit delayed neural network},
journal = {Kybernetika},
pages = {800--813},
year = {2015},
volume = {51},
number = {5},
doi = {10.14736/kyb-2015-5-0800},
mrnumber = {3445985},
zbl = {06537781},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0800/}
}
TY - JOUR AU - Wang, Lin Jun AU - Xie, You Xiang AU - Wei, Zhou Chao AU - Peng, Jian TI - Stability analysis and absolute synchronization of a three-unit delayed neural network JO - Kybernetika PY - 2015 SP - 800 EP - 813 VL - 51 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0800/ DO - 10.14736/kyb-2015-5-0800 LA - en ID - 10_14736_kyb_2015_5_0800 ER -
%0 Journal Article %A Wang, Lin Jun %A Xie, You Xiang %A Wei, Zhou Chao %A Peng, Jian %T Stability analysis and absolute synchronization of a three-unit delayed neural network %J Kybernetika %D 2015 %P 800-813 %V 51 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0800/ %R 10.14736/kyb-2015-5-0800 %G en %F 10_14736_kyb_2015_5_0800
Wang, Lin Jun; Xie, You Xiang; Wei, Zhou Chao; Peng, Jian. Stability analysis and absolute synchronization of a three-unit delayed neural network. Kybernetika, Tome 51 (2015) no. 5, pp. 800-813. doi: 10.14736/kyb-2015-5-0800
[1] Albertini, F., Alessandro, D.: Further conditions on the stability of continuous time systems with saturation. IEEE Trans. Circuits Syst I. 47 (2000), 723-729. | DOI
[2] Bélair, J., Campbell, S. A., Driessche, P. van den: Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math. 56 (1996), 245-255. | DOI | MR
[3] Bélair, J.: Stability in a model of a delayed neural network. J. Dynam. Dif. Equns. 5 (1993), 603-623. | DOI | MR | Zbl
[4] Bélair, J., Campbell, S. A.: Stability and bifurcations of equilibria in a multiple-delayed differential equation. SIAM J. Appl. Math. 54 (1994), 1402-1424. | DOI | MR | Zbl
[5] Beuter, A., Belair, J., Labrie, C.: Feedback and delays in neurological diseases: a modelling study using dynamical systems. Bull. Math. Biol. 55 (1993), 525-541. | DOI
[6] Campbell, S. A., Ruan, S., Wolkowicz, G. S. K., Wu, J.: Stability and bifurcation of a simple neural network with multiple time delays. Fields Institute Communications, vol. 21, American Mathematical Society, Providence, RI, 1998, pp. 65-79. | MR
[7] Chen, Y., Huang, Y., Wu, J.: desynchronization of large scale delayed neural networks. Proc. Amer. Math. Soc. 128 (2000), 2365-2371. | DOI | MR | Zbl
[8] Chen, Y., Lü, J. H., Lin, Z. L.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 1768-1775. | DOI | MR
[9] Cushing, J. M.: Integro-differential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomath, vol. 20, Springer, New York 1977. | DOI
[10] Dhamala, M., Jirsa, V., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92 (2004), 74-104. | DOI
[11] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H. O.: Delay Equations, Functional, Complex, and Nonlinear Analysis. Springer Verlag, New York 1995. | DOI | MR
[12] ., P., Driessche, Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58 (1998), 1878-1890. | DOI | MR
[13] Faria, T.: On a planar system modelling a neuron network with memory. J. Diff. Equns. 168 (2000), 129-149. | DOI | MR | Zbl
[14] Faria, T., Magalhes, L. T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Diff. Equations. 122 (1995), 181-200. | DOI | MR
[15] Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural network of excitation and inhibition. Physica D. 89 (1996), 395-426. | DOI | MR
[16] Hale, J.: Theory of Functional Differential Equations. Springer, New York 1997. | MR | Zbl
[17] Hale, J., Kocak, H.: Dynamics and Bifurcations. Springer, New York 1991. | MR | Zbl
[18] Hale, J., Lunel, S. V.: Introduction to Functional Differential Equations. Springer, New York 1993. | DOI | MR | Zbl
[19] Hirsch, M. W.: Convergent activation dynamics in continuous-time networks. Neural Networks 2 (1989), 331-349. | DOI
[20] Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1994), 3088-3092. | DOI
[21] Huang, L., Wu, J.: Dynamics of inhibitory artificial neural networks with threshold nonlinearity. Fields Ins. Commun. 29 (2001), 235-243. | MR | Zbl
[22] Karimi, H. R., Gao, H. J.: New Delay-Dependent Exponential H$\infty$ Synchronization for Uncertain Neural Networks with Mixed Time Delays. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173-185. | DOI
[23] Liu, Y. R., Wang, Z. D., Liang, J. L.: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Transactions on Neural Networks 20 (2009), 1102-1116. | DOI
[24] Lü, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846. | DOI | MR
[25] Marcus, C. M., Westervelt, R. M.: Stability of analog neural networks with delay. Phys. Rev. A. 39 (1989), 347-359. | DOI | MR
[26] Niebur, E., Schuster, H., Kammen, D.: Collective frequencies and meta stability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67 (1991), 2753-2756. | DOI
[27] Rosenblum, M. G., Pikovsky, A. S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92 (2004), 102-114. | DOI
[28] Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays, Dyn. Discrete Impuls Syst Ser A: Math. Anal. 10 (2003), 63-74. | MR
[29] Wu, J.: Introduction to Neural Dynamics and Signal Transmission Delay. Walter de Cruyter, Berlin 2001. | DOI | MR | Zbl
[30] Wu, J.: Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc. 350 (1998), 4799-4838. | DOI | MR | Zbl
[31] Yeung, M., Strogatz, S.: Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 82 (1999), 648-651. | DOI | MR
[32] Zhou, J., Lu, J. A., Lü, J. H.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Automat. Control 51 (2006), 4, 652-656. | DOI | MR
Cité par Sources :