Synchronization of two coupled Hindmarsh-Rose neurons
Kybernetika, Tome 51 (2015) no. 5, pp. 784-799
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples.
This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples.
DOI : 10.14736/kyb-2015-5-0784
Classification : 34D06
Keywords: coupled neurons; Hindmarsh–Rose neurons; synchronization; feedback control
@article{10_14736_kyb_2015_5_0784,
     author = {Ding, Ke and Han, Qing-Long},
     title = {Synchronization of two coupled {Hindmarsh-Rose} neurons},
     journal = {Kybernetika},
     pages = {784--799},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.14736/kyb-2015-5-0784},
     mrnumber = {3445984},
     zbl = {06537780},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0784/}
}
TY  - JOUR
AU  - Ding, Ke
AU  - Han, Qing-Long
TI  - Synchronization of two coupled Hindmarsh-Rose neurons
JO  - Kybernetika
PY  - 2015
SP  - 784
EP  - 799
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0784/
DO  - 10.14736/kyb-2015-5-0784
LA  - en
ID  - 10_14736_kyb_2015_5_0784
ER  - 
%0 Journal Article
%A Ding, Ke
%A Han, Qing-Long
%T Synchronization of two coupled Hindmarsh-Rose neurons
%J Kybernetika
%D 2015
%P 784-799
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0784/
%R 10.14736/kyb-2015-5-0784
%G en
%F 10_14736_kyb_2015_5_0784
Ding, Ke; Han, Qing-Long. Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika, Tome 51 (2015) no. 5, pp. 784-799. doi: 10.14736/kyb-2015-5-0784

[1] Barrio, R., Martinez, M. A., Serrano, S., Shilnikov, A.: Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos 24 (2014), 023128. | DOI | MR

[2] Chalike, S. K., Lee, K. W., Singh, S. N.: Synchronization of inferior olive neurons via $L_1$ adaptive feedback. Nonlinear Dynam. 78 (2014), 467-483. | DOI | MR

[3] Checco, P., Righero, M., Biey, M., Kocarev, L.: Synchronization in networks of Hindmarsh-Rose neurons. IEEE Trans. Circuits Syst. II: Exp. Briefs 55 (2008), 1274-1278. | DOI

[4] Ferrari, F. A. S., Viana, R. L., Lopesa, S. R., Stoop, R.: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw. 66 (2015), 107-118. | DOI

[5] Hindmarsh, J. L., Rose, R. M.: A mode of the nerve impulse using two first-order differential equations. Nature 296 (1982), 162-164. | DOI

[6] Holden, A. V., Fan, Y. S.: From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity. Chaos Soliton Fract. 2 (1992), 221-236. | DOI | Zbl

[7] Hosaka, R., Sakai, Y., Aihara, K.: Strange responses to fluctuating inputs in the Hindmarsh-Rose neurons. Lect. Notes Comput. Sci. 5864 (2009), 401-408. | DOI

[8] Hrg, D.: Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling. Neural Netw. 40 (2013), 73-79. | DOI | Zbl

[9] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, Upper Saddle River 2002.

[10] Kuntanapreeda, S.: Chaos synchronization of unified chaotic systems via LMI. Phys. Lett. A 373 (2009), 2837-2840. | DOI | Zbl

[11] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567. | MR

[12] Li, R., He, Z.: Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model. Nonlinear Dynam. 76 (2014), 697-715. | DOI | MR | Zbl

[13] Liang, H., Wang, Z., Yue, Z., Lu, R.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48 (2012), 190-205. | MR | Zbl

[14] Liu, X., Liu, S.: Codimension-two bifurcation analysis in two-dimensional Hindmarsh-Rose model. Nonlinear Dynam. 67 (2012), 847-857. | DOI | MR | Zbl

[15] Lü, J., Zhou, T., Chen, G., Yang, X.: Generating chaos with a switching piecewise-linear controller. Chaos 12 (2002), 344-349. | DOI

[16] Ma, M. H., Zhang, H., Cai, J. P., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika 49 (2013), 539-553. | MR | Zbl

[17] Meyer, T., Walker, C., Cho, R. Y., Olson, C. R.: Image familiarization sharpens response dynamics of neurons in inferotemporal cortex. Nat. Neurosci. 17 (2014), 1388-1394. | DOI

[18] Nguyena, L. H., Hong, K. S.: Synchronization of coupled chaotic FitzHugh-Nagumo neurons via Lyapunov functions. Math. Comput. Simulations 82 (2011), 590-603. | DOI | MR

[19] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic system. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR

[20] Sadeghi, S., Valizadeh, A.: Synchronization of delayed coupled neurons in presence of inhomogeneity. J. Comput. Neurosci. 36 (2014), 55-66. | DOI | MR

[21] Sedov, A. S., Medvednik, R. S., Raeva, S. N.: Significance of local synchronization and oscillatory processes of thalamic neurons in goal-directed human behavior. Hum. Physiol. 40 (2014), 1-7. | DOI

[22] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.: A Systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 854-864. | DOI

[23] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.: Designing hyperchaotic systems with any desired number of positive lyapunov exponents via a simple model. IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 2380-2389. | DOI

[24] Tan, X. H., Zhang, J. Y., Yang, Y. R.: Synchronizing chaotic systems using backstepping design. Chaos Soliton Fract. 16 (2003), 37-45. | DOI | MR | Zbl

[25] Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C.: Synchronization with error bound of non-identical forced oscillators. Kybernetika 44 (2008), 534-545. | MR | Zbl

[26] Wang, Q., Lu, Q., Chen, G., Guo, D.: Chaos synchronization of coupled neurons with gap junction. Phys. Lett. A 356 (2006), 17-25. | DOI

[27] Wang, C. N., Ma, J., Tang, J., Li, Y. L.: Instability and death of spiral wave in a two-dimensional array of Hindmarsh-Rose neurons. Commun. Theor. Phys. 53 (2010), 382-388. | DOI

[28] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 359-374. | MR | Zbl

[29] Wu, X. F., Zhao, Y., Wang, M. H.: Global synchronization of chaotic Lur'e systems via replacing variables control. Kybernetika 44 (2008), 571-584. | MR | Zbl

[30] Wu, A. L., Zeng, Z. G.: Exponential passivity of memristive neural networks with time delays. Neural Netw. 49 (2014), 11-18. | DOI | Zbl

Cité par Sources :