Keywords: relation; poset; order reversing involutions; weakly orthogonal poset; transitivity
@article{10_14736_kyb_2015_5_0747,
author = {Jani\v{s}, Vladim{\'\i}r and Montes, Susana and \v{S}e\v{s}elja, Branimir and Tepav\v{c}evi\'c, Andreja},
title = {Poset-valued preference relations},
journal = {Kybernetika},
pages = {747--764},
year = {2015},
volume = {51},
number = {5},
doi = {10.14736/kyb-2015-5-0747},
mrnumber = {3445982},
zbl = {06537778},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0747/}
}
TY - JOUR AU - Janiš, Vladimír AU - Montes, Susana AU - Šešelja, Branimir AU - Tepavčević, Andreja TI - Poset-valued preference relations JO - Kybernetika PY - 2015 SP - 747 EP - 764 VL - 51 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0747/ DO - 10.14736/kyb-2015-5-0747 LA - en ID - 10_14736_kyb_2015_5_0747 ER -
%0 Journal Article %A Janiš, Vladimír %A Montes, Susana %A Šešelja, Branimir %A Tepavčević, Andreja %T Poset-valued preference relations %J Kybernetika %D 2015 %P 747-764 %V 51 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0747/ %R 10.14736/kyb-2015-5-0747 %G en %F 10_14736_kyb_2015_5_0747
Janiš, Vladimír; Montes, Susana; Šešelja, Branimir; Tepavčević, Andreja. Poset-valued preference relations. Kybernetika, Tome 51 (2015) no. 5, pp. 747-764. doi: 10.14736/kyb-2015-5-0747
[1] Bezdek, J., Spillman, B., Spillman, R.: A fuzzy relation space for group decision theory. Fuzzy Sets Systems 1 (1978), 255-268. | DOI | MR | Zbl
[2] Birkhoff, G.: Lattice Theory. (Third edition. AMS Colloquium Publications, Vol. XXV, 1967. | MR
[3] Chajda, I.: An algebraic axiomatization of orthogonal posets. Soft Computing 18 (2013), 1, 1-4). | DOI
[4] Cignoli, R., Esteva, F.: Commutative, integral bounded residuated lattices with an added involution. Annals of Pure and Applied Logic 161 (2009), 2, 150-160. | DOI | MR | Zbl
[5] Dasgupta, M., Deb, R.: Fuzzy choice functions. Soc. Choice Welfare 8 (1991), 2, 171-182. | DOI | MR | Zbl
[6] David, H.: The Method of Paired Comparisons. Griffin's Statistical Monographs and Courses, Vol. 12, Charles Griffin and D. Ltd., 1963. | MR | Zbl
[7] Baets, B. De, Meyer, H. De: Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152 (2005), 2, 249-270. | MR | Zbl
[8] Baets, B. De, Meyer, H. De, Schuymer, B. De: Cyclic Evaluation of Transitivity of Reciprocal Relations. Social Choice and Welfare 26 (2006), 217-238. | DOI | MR | Zbl
[9] Doignon, J.-P., Monjardet, B., Roubens, M., Vincke, Ph.: Biorder families, valued relations, and preference modelling. J. Math. Psych. 30 (1986), 435-480. | DOI | MR | Zbl
[10] Dutta, B., Laslier, J.F.: Comparison functions and choice correspondences. Soc. Choice Welfare 16 (1999), 513-532. | DOI | MR | Zbl
[11] Fan, Z.-P., X, X. Chen: Consensus measures and adjusting inconsistency of linguistic preference relations in group decision making. Lecture Notes in Artificial Intelligence, Springer-Verlag 3613 (2005), 130-139. | DOI
[12] Fan, Z.-P., Jiang, Y. P.: A judgment method for the satisfying consistency of linguistic judgment matrix. Control and Decision 19 (2004), 903-906.
[13] Fishburn, P. C.: Binary choice probabilities: on the varieties of stochastic transitivity. J. Math. Psychology 10 (1973), 327-352. | DOI | MR | Zbl
[14] Flachsmeyer, J.: Note on orthocomplemented posets II. In: Proc. 10th Winter School on Abstract Analysis (Z. Frolík, ed.), Circolo Matematico di Palermo, Palermo 1982. pp. 67-74. | MR | Zbl
[15] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers 1994. | DOI | Zbl
[16] García-Lapresta, J., Llamazares, B.: Aggregation of fuzzy preferences: some rules of the mean. Soc. Choice Welfare 17 (2000), 673-690. | DOI | MR | Zbl
[17] García-Lapresta, J., Llamazares, B.: Majority decisions based on difference of votes. J. Math. Economics 35 (2001), 463-481. | DOI | MR | Zbl
[18] Goguen, J. A.: $L$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR | Zbl
[19] Herrera, F.: A sequential selection process in group decision making with linguistic assessment. Inform. Sci. 85 (1995), 223-239. | DOI
[20] Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets and Systems 115 (2000), 67-82. | DOI | MR | Zbl
[21] Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems 8 (2000), 746-752. | DOI | MR
[22] Herrera, F., Herrera-Viedma, E., Mart{í}nez, L.: A fusion approach for managing multi-granularity linguistic terms sets in decision making. Fuzzy Sets and Systems 114 (2000), 43-58. | DOI | MR
[23] Herrera, F., Herrera-Viedma, E., Verdegay, J. L.: A Model of Consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems 78 (1996), 73-87. | DOI | MR
[24] Herrera, F., Herrera-Viedma, E., Verdegay, J. L.: Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems 79 (1996), 175-190. | DOI | MR | Zbl
[25] Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Systems, Man and Cybernetics 32 (2002), 394-402. | DOI
[26] Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49 (1992), 21-31. | DOI | MR | Zbl
[27] Kacprzyk, J., Nurmi, H., (eds.), M. Fedrizzi: Consensus under Fuzziness. Kluwer Academic Publishers, Boston 1996. | Zbl
[28] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Boston - London - Dordrecht 2000. | DOI | MR | Zbl
[29] Lahiri, S.: Axiomatic characterizations of threshold choice functions for comparison functions. Fuzzy Sets and Systems 132 (2002), 77-82. | DOI | MR | Zbl
[30] Menger, K.: Probabilistic theories of relations. Proc. Nat. Acad. Sci. (Math.) 37 (1951), 178-180. | DOI | MR | Zbl
[31] Monjardet, B.: A generalisation of probabilistic consistency: linearity conditions for valued preference relations. In: Non-conventional Preference Relations in Decision Making (J. Kacprzyk and M. Roubens, eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 301, Springer-Verlag, 1988. | DOI | MR
[32] Nurmi, H.: Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets Systems 6 (1981), 249-259. | DOI | MR | Zbl
[33] Nurmi, H.: Comparing Voting Systems. Reidel, Dordrecht 1987. | DOI
[34] Ovchinnikov, S.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 1, 107-126. | DOI | MR | Zbl
[35] Pták, P., Pulmannová, P.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht 1991. | MR | Zbl
[36] Roberts, F.: Homogeneous families of semiorders and the theory of probabilistic consistency. J. Math. Psych. 8 (1971), 248-263. | DOI | MR | Zbl
[37] Roubens, M., Vincke, Ph.: Preference Modelling. Springer-Verlag, Berlin 1985. | DOI | MR | Zbl
[38] Šešelja, B., Tepavčević, A.: On a construction of codes by $P$-fuzzy sets. Review of Research, Fac. of Sci., Univ. of Novi Sad, Math. Ser. 20 2 (1990), 71-80. | MR | Zbl
[39] Šešelja, B., Tepavčević, A.: Partially ordered and relational valued fuzzy relations I. Fuzzy Sets and Systems 72 (1995), 2, 205-213. | DOI | MR | Zbl
[40] Šešelja, B., Tepavčević, A.: Completion of ordered structures by cuts of fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 1-19. | DOI | MR | Zbl
[41] Šeselja, B., Tepavčević, A.: Representing ordered structures by fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 21-39. | DOI | MR | Zbl
[42] Switalski, Z.: Rationality of fuzzy reciprocal preference relations. Fuzzy Sets and Systems 107 (1999), 187-190. | DOI | MR | Zbl
[43] Yager, R. R.: An approach to ordinal decision making. Int. J. Approx. Reasoning 12 (1995), 237-261. | DOI | MR | Zbl
[44] Zadeh, L. A.: Fuzzy sets. Information and Control 8 (1965), 338-353. | DOI | MR | Zbl
Cité par Sources :