Poset-valued preference relations
Kybernetika, Tome 51 (2015) no. 5, pp. 747-764
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In decision processes some objects may not be comparable with respect to a preference relation, especially if several criteria are considered. To provide a model for such cases a poset valued preference relation is introduced as a fuzzy relation on a set of alternatives with membership values in a partially ordered set. We analyze its properties and prove the representation theorem in terms of particular order reversing involution on the co-domain poset. We prove that for every set of alternatives there is a poset valued preference whose cut relations are all relations on this domain. We also deal with particular transitivity of such preferences.
In decision processes some objects may not be comparable with respect to a preference relation, especially if several criteria are considered. To provide a model for such cases a poset valued preference relation is introduced as a fuzzy relation on a set of alternatives with membership values in a partially ordered set. We analyze its properties and prove the representation theorem in terms of particular order reversing involution on the co-domain poset. We prove that for every set of alternatives there is a poset valued preference whose cut relations are all relations on this domain. We also deal with particular transitivity of such preferences.
DOI : 10.14736/kyb-2015-5-0747
Classification : 03G10, 91B08
Keywords: relation; poset; order reversing involutions; weakly orthogonal poset; transitivity
@article{10_14736_kyb_2015_5_0747,
     author = {Jani\v{s}, Vladim{\'\i}r and Montes, Susana and \v{S}e\v{s}elja, Branimir and Tepav\v{c}evi\'c, Andreja},
     title = {Poset-valued preference relations},
     journal = {Kybernetika},
     pages = {747--764},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.14736/kyb-2015-5-0747},
     mrnumber = {3445982},
     zbl = {06537778},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0747/}
}
TY  - JOUR
AU  - Janiš, Vladimír
AU  - Montes, Susana
AU  - Šešelja, Branimir
AU  - Tepavčević, Andreja
TI  - Poset-valued preference relations
JO  - Kybernetika
PY  - 2015
SP  - 747
EP  - 764
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0747/
DO  - 10.14736/kyb-2015-5-0747
LA  - en
ID  - 10_14736_kyb_2015_5_0747
ER  - 
%0 Journal Article
%A Janiš, Vladimír
%A Montes, Susana
%A Šešelja, Branimir
%A Tepavčević, Andreja
%T Poset-valued preference relations
%J Kybernetika
%D 2015
%P 747-764
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0747/
%R 10.14736/kyb-2015-5-0747
%G en
%F 10_14736_kyb_2015_5_0747
Janiš, Vladimír; Montes, Susana; Šešelja, Branimir; Tepavčević, Andreja. Poset-valued preference relations. Kybernetika, Tome 51 (2015) no. 5, pp. 747-764. doi: 10.14736/kyb-2015-5-0747

[1] Bezdek, J., Spillman, B., Spillman, R.: A fuzzy relation space for group decision theory. Fuzzy Sets Systems 1 (1978), 255-268. | DOI | MR | Zbl

[2] Birkhoff, G.: Lattice Theory. (Third edition. AMS Colloquium Publications, Vol. XXV, 1967. | MR

[3] Chajda, I.: An algebraic axiomatization of orthogonal posets. Soft Computing 18 (2013), 1, 1-4). | DOI

[4] Cignoli, R., Esteva, F.: Commutative, integral bounded residuated lattices with an added involution. Annals of Pure and Applied Logic 161 (2009), 2, 150-160. | DOI | MR | Zbl

[5] Dasgupta, M., Deb, R.: Fuzzy choice functions. Soc. Choice Welfare 8 (1991), 2, 171-182. | DOI | MR | Zbl

[6] David, H.: The Method of Paired Comparisons. Griffin's Statistical Monographs and Courses, Vol. 12, Charles Griffin and D. Ltd., 1963. | MR | Zbl

[7] Baets, B. De, Meyer, H. De: Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152 (2005), 2, 249-270. | MR | Zbl

[8] Baets, B. De, Meyer, H. De, Schuymer, B. De: Cyclic Evaluation of Transitivity of Reciprocal Relations. Social Choice and Welfare 26 (2006), 217-238. | DOI | MR | Zbl

[9] Doignon, J.-P., Monjardet, B., Roubens, M., Vincke, Ph.: Biorder families, valued relations, and preference modelling. J. Math. Psych. 30 (1986), 435-480. | DOI | MR | Zbl

[10] Dutta, B., Laslier, J.F.: Comparison functions and choice correspondences. Soc. Choice Welfare 16 (1999), 513-532. | DOI | MR | Zbl

[11] Fan, Z.-P., X, X. Chen: Consensus measures and adjusting inconsistency of linguistic preference relations in group decision making. Lecture Notes in Artificial Intelligence, Springer-Verlag 3613 (2005), 130-139. | DOI

[12] Fan, Z.-P., Jiang, Y. P.: A judgment method for the satisfying consistency of linguistic judgment matrix. Control and Decision 19 (2004), 903-906.

[13] Fishburn, P. C.: Binary choice probabilities: on the varieties of stochastic transitivity. J. Math. Psychology 10 (1973), 327-352. | DOI | MR | Zbl

[14] Flachsmeyer, J.: Note on orthocomplemented posets II. In: Proc. 10th Winter School on Abstract Analysis (Z. Frolík, ed.), Circolo Matematico di Palermo, Palermo 1982. pp. 67-74. | MR | Zbl

[15] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers 1994. | DOI | Zbl

[16] García-Lapresta, J., Llamazares, B.: Aggregation of fuzzy preferences: some rules of the mean. Soc. Choice Welfare 17 (2000), 673-690. | DOI | MR | Zbl

[17] García-Lapresta, J., Llamazares, B.: Majority decisions based on difference of votes. J. Math. Economics 35 (2001), 463-481. | DOI | MR | Zbl

[18] Goguen, J. A.: $L$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR | Zbl

[19] Herrera, F.: A sequential selection process in group decision making with linguistic assessment. Inform. Sci. 85 (1995), 223-239. | DOI

[20] Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets and Systems 115 (2000), 67-82. | DOI | MR | Zbl

[21] Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems 8 (2000), 746-752. | DOI | MR

[22] Herrera, F., Herrera-Viedma, E., Mart{í}nez, L.: A fusion approach for managing multi-granularity linguistic terms sets in decision making. Fuzzy Sets and Systems 114 (2000), 43-58. | DOI | MR

[23] Herrera, F., Herrera-Viedma, E., Verdegay, J. L.: A Model of Consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems 78 (1996), 73-87. | DOI | MR

[24] Herrera, F., Herrera-Viedma, E., Verdegay, J. L.: Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems 79 (1996), 175-190. | DOI | MR | Zbl

[25] Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Systems, Man and Cybernetics 32 (2002), 394-402. | DOI

[26] Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49 (1992), 21-31. | DOI | MR | Zbl

[27] Kacprzyk, J., Nurmi, H., (eds.), M. Fedrizzi: Consensus under Fuzziness. Kluwer Academic Publishers, Boston 1996. | Zbl

[28] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Boston - London - Dordrecht 2000. | DOI | MR | Zbl

[29] Lahiri, S.: Axiomatic characterizations of threshold choice functions for comparison functions. Fuzzy Sets and Systems 132 (2002), 77-82. | DOI | MR | Zbl

[30] Menger, K.: Probabilistic theories of relations. Proc. Nat. Acad. Sci. (Math.) 37 (1951), 178-180. | DOI | MR | Zbl

[31] Monjardet, B.: A generalisation of probabilistic consistency: linearity conditions for valued preference relations. In: Non-conventional Preference Relations in Decision Making (J. Kacprzyk and M. Roubens, eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 301, Springer-Verlag, 1988. | DOI | MR

[32] Nurmi, H.: Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets Systems 6 (1981), 249-259. | DOI | MR | Zbl

[33] Nurmi, H.: Comparing Voting Systems. Reidel, Dordrecht 1987. | DOI

[34] Ovchinnikov, S.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 1, 107-126. | DOI | MR | Zbl

[35] Pták, P., Pulmannová, P.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht 1991. | MR | Zbl

[36] Roberts, F.: Homogeneous families of semiorders and the theory of probabilistic consistency. J. Math. Psych. 8 (1971), 248-263. | DOI | MR | Zbl

[37] Roubens, M., Vincke, Ph.: Preference Modelling. Springer-Verlag, Berlin 1985. | DOI | MR | Zbl

[38] Šešelja, B., Tepavčević, A.: On a construction of codes by $P$-fuzzy sets. Review of Research, Fac. of Sci., Univ. of Novi Sad, Math. Ser. 20 2 (1990), 71-80. | MR | Zbl

[39] Šešelja, B., Tepavčević, A.: Partially ordered and relational valued fuzzy relations I. Fuzzy Sets and Systems 72 (1995), 2, 205-213. | DOI | MR | Zbl

[40] Šešelja, B., Tepavčević, A.: Completion of ordered structures by cuts of fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 1-19. | DOI | MR | Zbl

[41] Šeselja, B., Tepavčević, A.: Representing ordered structures by fuzzy sets. An overview. Fuzzy Sets and Systems 136 (2003), 21-39. | DOI | MR | Zbl

[42] Switalski, Z.: Rationality of fuzzy reciprocal preference relations. Fuzzy Sets and Systems 107 (1999), 187-190. | DOI | MR | Zbl

[43] Yager, R. R.: An approach to ordinal decision making. Int. J. Approx. Reasoning 12 (1995), 237-261. | DOI | MR | Zbl

[44] Zadeh, L. A.: Fuzzy sets. Information and Control 8 (1965), 338-353. | DOI | MR | Zbl

Cité par Sources :