Remarks on effect-tribes
Kybernetika, Tome 51 (2015) no. 5, pp. 739-746
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that an effect tribe of fuzzy sets ${\mathcal T}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, where ${\mathcal B}_0({\mathcal T})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal T}$, is a tribe. Moreover, a monotone $\sigma$-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal T},h)$, where the tribe ${\mathcal T}$ has the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, is a $\sigma$-MV-algebra.
We show that an effect tribe of fuzzy sets ${\mathcal T}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, where ${\mathcal B}_0({\mathcal T})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal T}$, is a tribe. Moreover, a monotone $\sigma$-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal T},h)$, where the tribe ${\mathcal T}$ has the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, is a $\sigma$-MV-algebra.
DOI : 10.14736/kyb-2015-5-0739
Classification : 81P10, 81P15
Keywords: effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra
@article{10_14736_kyb_2015_5_0739,
     author = {Pulmannov\'a, Sylvia and Vincekov\'a, Elena},
     title = {Remarks on effect-tribes},
     journal = {Kybernetika},
     pages = {739--746},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.14736/kyb-2015-5-0739},
     mrnumber = {3445981},
     zbl = {06537777},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0739/}
}
TY  - JOUR
AU  - Pulmannová, Sylvia
AU  - Vinceková, Elena
TI  - Remarks on effect-tribes
JO  - Kybernetika
PY  - 2015
SP  - 739
EP  - 746
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0739/
DO  - 10.14736/kyb-2015-5-0739
LA  - en
ID  - 10_14736_kyb_2015_5_0739
ER  - 
%0 Journal Article
%A Pulmannová, Sylvia
%A Vinceková, Elena
%T Remarks on effect-tribes
%J Kybernetika
%D 2015
%P 739-746
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0739/
%R 10.14736/kyb-2015-5-0739
%G en
%F 10_14736_kyb_2015_5_0739
Pulmannová, Sylvia; Vinceková, Elena. Remarks on effect-tribes. Kybernetika, Tome 51 (2015) no. 5, pp. 739-746. doi: 10.14736/kyb-2015-5-0739

[1] Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Loomis-Sikorski representation of monotone $\sigma$-complete effect algebras. Fuzzy Sets Syst. 157 (2006), 683-690. | DOI | MR | Zbl

[2] Butnariu, D., Klement, E. P.: Triangular Norm Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publisher, Dordrecht 1993. | DOI | MR | Zbl

[3] Dvurečenskij, A.: Representation of states on effect-tribes and effect algebras by integrals. Rep. Math. Phys. 67 (2011), 63-85. | DOI | MR | Zbl

[4] Dvurečenskij, A.: Smearing of observables and spectral measures on quantum structures. Found. Phys. 43 (2013), 210-224. | DOI | MR | Zbl

[5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo effect algebras. J. Austral. Math. Soc. 74 (2003), 121-143. | DOI | MR | Zbl

[6] Dvurečenskij, A.: Loomis-Sikorski theorem for $\sigma$-complete MV-algebras and $\ell$-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. | DOI | MR | Zbl

[7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic/Ister Science, Dordrecht/Bratislava 2000. | DOI | MR | Zbl

[8] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325-1346. | DOI | MR | Zbl

[9] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91-106. | DOI | MR | Zbl

[10] Goodearl, K. R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, Vol. 20, Am. Math. Soc., Providence 1986. | DOI | MR | Zbl

[11] Jenčová, A., Pulmannová, S., Vinceková, E.: Observables on $\sigma$-MV algebras and $\sigma$-lattice effect algebras. Kybernetika 47 (2011), 541-559. | MR | Zbl

[12] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. Funct. Anal. 65 (1986), 15-63. | DOI | MR

[13] Mundici, D.: Tensor product and the Loomis-Sikorski theorem for MV-algebras. Adv. Appl. Math. 22 (1999), 227-248. | DOI | MR

[14] Pulmannová, S.: A spectral theorem for sigma MV-algebras. Kybernetika 41 (2005), 361-374. | MR | Zbl

[15] Ravindran, K.: On a Structure Theory of Effect Algebras. PhD. Thesis, Kansas State Univ. Manhattan 1996. | MR

Cité par Sources :