Remarks on effect-tribes
Kybernetika, Tome 51 (2015) no. 5, pp. 739-746
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that an effect tribe of fuzzy sets ${\mathcal T}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, where ${\mathcal B}_0({\mathcal T})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal T}$, is a tribe. Moreover, a monotone $\sigma$-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal T},h)$, where the tribe ${\mathcal T}$ has the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, is a $\sigma$-MV-algebra.
DOI :
10.14736/kyb-2015-5-0739
Classification :
81P10, 81P15
Keywords: effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra
Keywords: effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra
@article{10_14736_kyb_2015_5_0739,
author = {Pulmannov\'a, Sylvia and Vincekov\'a, Elena},
title = {Remarks on effect-tribes},
journal = {Kybernetika},
pages = {739--746},
publisher = {mathdoc},
volume = {51},
number = {5},
year = {2015},
doi = {10.14736/kyb-2015-5-0739},
mrnumber = {3445981},
zbl = {06537777},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0739/}
}
Pulmannová, Sylvia; Vinceková, Elena. Remarks on effect-tribes. Kybernetika, Tome 51 (2015) no. 5, pp. 739-746. doi: 10.14736/kyb-2015-5-0739
Cité par Sources :