Keywords: exponential family; variance function; Kullback–Leibler divergence; relative entropy; information divergence; mean parametrization; convex support
@article{10_14736_kyb_2015_5_0725,
author = {Mat\'u\v{s}, Franti\v{s}ek},
title = {On limiting towards the boundaries of exponential families},
journal = {Kybernetika},
pages = {725--738},
year = {2015},
volume = {51},
number = {5},
doi = {10.14736/kyb-2015-5-0725},
mrnumber = {3445980},
zbl = {06537776},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-5-0725/}
}
Matúš, František. On limiting towards the boundaries of exponential families. Kybernetika, Tome 51 (2015) no. 5, pp. 725-738. doi: 10.14736/kyb-2015-5-0725
[1] Ay, N.: An information-geometric approach to a theory of pragmatic structuring. The Annals of Probability 30 (2002), 416-436. | DOI | MR | Zbl
[2] Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory. Wiley, New York 1978. | MR | Zbl
[3] Brown, L. D.: Fundamentals of Statistical Exponential Families. Inst. of Math. Statist. Lecture Notes - Monograph Series 9 (1986). | MR | Zbl
[4] Chentsov, N. N.: Statistical Decision Rules and Optimal Inference. Translations of Mathematical Monographs, Amer. Math. Soc., Providence - Rhode Island 1982 (Russian original: Nauka, Moscow, 1972). | MR | Zbl
[5] Csiszár, I., Matúš, F.: Closures of exponential families. The Annals of Probability 33 (2005), 582-600. | DOI | MR | Zbl
[6] Csiszár, I., Matúš, F.: Generalized maximum likelihood estimates for exponential families. Probability Theory and Related Fields 141 (2008), 213-246. | DOI | MR | Zbl
[7] Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics. Second edition. Addison-Wesley, Reading, Massachusetts 1994, p. 446. | MR
[8] Letac, G.: Lectures on Natural Exponential Families and their Variance Functions. Monografias de Matemática 50, Instituto de Matemática Pura e Aplicada, Rio de Janeiro 1992. | MR | Zbl
[9] Matúš, F., Ay, N.: On maximization of the information divergence from an exponential family. In: Proc. WUPES'03 (J. Vejnarová, ed.), University of Economics, Prague 2003, pp. 99-204.
[10] Matúš, F.: Optimality conditions for maximizers of the divergence from an EF. Kybernetika 43 (2007), 731-746. | MR
[11] Matúš, F.: Divergence from factorizable distributions and matroid representations by partitions. IEEE Trans. Inform. Theory 55 (2009), 5375-5381. | DOI | MR
[12] F., F.Matúš, Rauh, J.: Maximization of the information divergence from an exponential family and criticality. In: Proc. IEEE ISIT 2011, St. Petersburg 2011, pp. 809-813. | DOI
[13] Montúfar, G., J., J. Rauh, Ay, N.: Maximal information divergence from statistical models defined by neural networks. In: Proc. GSI 2013, Paris 2013, Lecture Notes in Computer Science 8085 (2013), 759-766. | DOI | Zbl
[14] Rauh, J.: Finding the maximizers of the information divergence from an exponential family. IEEE Trans. Inform. Theory 57 (2011), 3236-3247. | DOI | MR
[15] Rockafellar, R. T.: Convex Analysis. Princeton University Press, 1970. | DOI | MR | Zbl
Cité par Sources :