Fuzzy orness measure and new orness axioms
Kybernetika, Tome 51 (2015) no. 4, pp. 712-723
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.
We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.
DOI : 10.14736/kyb-2015-4-0712
Classification : 03E72, 28E10
Keywords: aggregation function; OWA operator; orness measure
@article{10_14736_kyb_2015_4_0712,
     author = {Jin, LeSheng and Kalina, Martin and Qian, Gang},
     title = {Fuzzy orness measure and new orness axioms},
     journal = {Kybernetika},
     pages = {712--723},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.14736/kyb-2015-4-0712},
     mrnumber = {3423196},
     zbl = {06530340},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0712/}
}
TY  - JOUR
AU  - Jin, LeSheng
AU  - Kalina, Martin
AU  - Qian, Gang
TI  - Fuzzy orness measure and new orness axioms
JO  - Kybernetika
PY  - 2015
SP  - 712
EP  - 723
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0712/
DO  - 10.14736/kyb-2015-4-0712
LA  - en
ID  - 10_14736_kyb_2015_4_0712
ER  - 
%0 Journal Article
%A Jin, LeSheng
%A Kalina, Martin
%A Qian, Gang
%T Fuzzy orness measure and new orness axioms
%J Kybernetika
%D 2015
%P 712-723
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2015-4-0712/
%R 10.14736/kyb-2015-4-0712
%G en
%F 10_14736_kyb_2015_4_0712
Jin, LeSheng; Kalina, Martin; Qian, Gang. Fuzzy orness measure and new orness axioms. Kybernetika, Tome 51 (2015) no. 4, pp. 712-723. doi: 10.14736/kyb-2015-4-0712

[1] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1953), 131-295. | DOI | MR | Zbl

[2] Dujmović, J. J.: LSP method and its use for evaluation of Java IDEs. Int. J. Approx. Reasoning 41 (2006), 3-22. | DOI | Zbl

[3] Dujmović, J. J.: Continuous preference logic for system evaluation. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1082-1099. | DOI

[4] Dujmović, J. J.: Andness and orness as a mean of overall importance. In: IEEE International Conference on Fuzzy Systems, FUZZ 2012, Brisbane 2012, pp. 1-6. | DOI

[5] Filev, D., Yager, R. R.: On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94 (1998), 157-169. | DOI | MR

[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. | DOI | MR | Zbl

[7] Hesamian, G., Taheri, S. M.: Fuzzy empirical distribution function: Properties and application. Kybernetika, 49 (2013), 6, 962-982. | MR

[8] Jin, L.: Some properties and representation methods for Ordered Weighted Averaging operators. Fuzzy Sets and Systems 261 (2015), 60-86. | DOI | MR

[9] Kishor, A., Singh, A. K., Pal, N. R.: Orness measure of OWA operators: a new approach. IEEE Trans. Fuzzy Syst. 22 (2014), 4, 1039-1045. | DOI

[10] Kolesárová, A., Mesiar, R., Rückschlossová, T.: Power stable aggregation functions. Fuzzy Sets and Systems 240 (2014), 39-50. | DOI | MR | Zbl

[11] Liu, X. W.: On the properties of equidifferent OWA operator. Int. J. Approx. Reasoning 43 (2006), 90-107. | DOI | MR | Zbl

[12] Liu, X. W.: An orness measure for quasi-arithmetic means. IEEE Trans. Fuzzy Syst. 16 (2006), 6, 837-848. | DOI

[13] Liu, X. W.: Models to determine parameterized ordered weighted averaging operators using optimization criteria. Inf. Sci. 190 (2012), 27-55. | DOI | MR

[14] Liu, X. W., Chen, L. H.: On the properties of parametric geometric OWA operator. Int. J. Approx. Reasoning 35 (2004), 163-178. | DOI | MR | Zbl

[15] Liu, X. W., Han, S. L.: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. Int. J. Approx. Reasoning 48 (2008), 77-97. | DOI | MR | Zbl

[16] Mareš, M., Mesiar, R.: Information in vague data sources. Kybernetika 49 (2013), 3, 433-445. | MR

[17] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364. | DOI | MR | Zbl

[18] Mesiar, R., Li, J., Pap, E.: Superdecomposition integrals. Fuzzy Sets Syst. 259 (2015), 3-11. | DOI | MR

[19] Mesiar, R., Stupňanová, A.: Decomposition integrals. Int. J. Approx. Reason. 54 (2013), 1252-1259. | DOI | MR | Zbl

[20] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD. Thesis. Tokyo Institute of Technology 1974.

[21] Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12 (1997), 153-166. | DOI | Zbl

[22] Troiano, L., Yager, R. R.: Recursive and iterative OWA operators. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 13 (2005), 6, 579-599. | DOI | MR | Zbl

[23] Wallmann, C., Kleiter, G. D.: Degradation in probability logic: When more information leads to less precise conclusions. Kybernetika 50 (2014), 2, 268-283. | DOI | MR | Zbl

[24] Xu, Z. S.: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20 (2005), 8, 843-865. | DOI | Zbl

[25] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1) (1988), 183-190. | DOI | MR

[26] Yager, R. R.: Families of OWA operators. Fuzzy Sets and Systems 59 (1993), 125-143. | DOI | MR | Zbl

[27] Yager, R. R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11 (1996), 49-73. | DOI

[28] Yager, R. R.: Induced aggregation operators. Fuzzy Sets and Systems 137 (2003), 59-69. | DOI | MR | Zbl

[29] Yager, R. R.: OWA Aggregation Over a Continuous Interval Argument With Applications to Decision Making. IEEE Trans. Syst. Man Cybern. Part B 34 (2004), 1952-1963. | DOI

[30] Yager, R. R.: Centered OWA operators. Soft Computing 11 (2007), 631-639. | DOI | Zbl

[31] Yager, R. R.: Time series smoothing and OWA aggregation. IEEE Trans. Fuzzy Syst. 16 (4) (2008), 994-1007. | DOI

[32] Yager, R. R.: Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18 (2010), 1, 57-66. | DOI | MR

[33] Yager, R. R.: Probabilistically weighted OWA aggregation. IEEE Trans. Fuzzy Syst. 22 (2014), 46-56. | DOI

[34] Yager, R. R., Filev, D. P.: Parameterized and-like and or-like OWA operators. Int. J. Gen. Syst. 22 (1994), 297-316. | DOI

[35] Yager, R. R., Filev, D. P.: Operations for granular computing: mixing words and numbers. In: Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence, Anchorage 1998, pp. 123-128. | DOI

[36] Yager, R. R., Filev, D. P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybernet. 29 (1999), 141-150. | DOI

[37] Yager, R. R., Kacprzyk, J., Beliakov, G.: Recent Developments on the Ordered Weighted Averaging Operators: Theory and Practice. Springer-Verlag, Berlin 2011. | DOI | MR

Cité par Sources :